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Abstract

SMALLbox is a new foundational framework for processing signals using adaptive sparse
structured representations. The main aim of SMALLbox is to become a test ground for ex-
ploration of new provably good methods and to obtain inherently data-driven sparse models,
which are able to cope with large-scale and complicated data. The main focus of research in
the area of sparse representations is to develop reliable algorithms with provable performance
and bounded complexity. Yet, such approaches are simply inapplicable in many scenarios
for which no suitable sparse model is known. Moreover, the success of sparse models heav-
ily depends on the choice of a “dictionary” to reflect the natural structures of a class of
data. Inferring a dictionary from training data is a key to the extension of sparse models
for new exotic types of data. SMALLbox provides an easy way to evaluate these methods
against state-of-the art alternatives in a variety of standard signal processing problems. This
is achieved through a unifying interface that enables a seamless connection between the three
types of modules: problems, dictionary learning algorithms and sparse solvers. In addition,
it provides interoperability between existing state-of-the-art toolboxes. As an open source
MATLAB toolbox, SMALLbox can be seen as a tool for reproducible research in the sparse
representations research community.
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1 Introduction

The field of sparse representations has become a very active research area in recent years, and
many toolboxes implementing a variety of greedy or other types of sparse algorithms have
become freely available in the community [1–4]. As the number of algorithms has grown,
there has become a need for a proper testing and benchmarking environment. This need
was partially addressed with the SPARCO framework [5], which provides a large collection of
imaging, signal processing, compressed sensing and geophysics sparse reconstruction problems.
It also includes a large library of operators that can be used to create new test problems.
However, using SPARCO with other sparse representations toolboxes, such as SparseLab [1]
is tedious and non-trivial because of the inconsistency in the APIs of the different toolboxes.

Many algorithms exist that aim to solve the sparse representation dictionary learning prob-
lem [6–8]. However, no comprehensive means of testing and benchmarking these algorithms
exist, in contrast to the problem of sparse representation with a known dictionary. The main
driving force for this work is the lack of a toolbox such as SPARCO for dictionary learning
problems. Recognising the need of the community for such a toolbox, we set out to design
SMALLbox—a MATLAB toolbox that mainly aims:

• to enable an easy way of comparing dictionary learning algorithms,
• to provide a unifying API that will enable interoperability and re-use of already available

toolboxes for sparse representations and dictionary learning,
• to aid the reproducible research effort in sparse signal representations and dictionary

learning.

However, before explaining in detail the structure of the software, we first introduce the
type of problem that we are addressing: sparse representations and dictionary learning.
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2 Sparse Representations and Dictionary Learning

Sparse signal representations allow the salient information within a signal to be conveyed with
only a few elementary components, known as atoms drawn from a given redundant matrix. For
this reason, they have acquired great popularity over the years, and they have been successfully
applied to a variety of problems.

Figure 1: Sparse representation of a signal b

Figure 1 illustrates how the observed data b can be represented as a linear combination
of only a few columns of the matrix A. This matrix is also known as a dictionary, and its
columns are called atoms. The sparse model assumes that the vector b is generated by the
superimposition of only a few atoms weighted appropriately by the corresponding non-zero
entries of the sparse vector x. Therefore, one can attempt to decompose any signal of interest
in a given dictionary. In the case when the resulting representation is s-sparse i.e. only s
entries of x are non-zero, the signal of interest is said to be exact sparse. The sparse model is
very simple, yet very powerful. For instance, in the presence of noise and interfering signals,
which in contrast to the signal of interest do not have a sparse representation in the dictionary
A, keeping only the largest coefficients while discarding the rest will result in the removal of
a good proportion of the undesired noise or interference. However, to do this we first need to
solve the above inverse problem and find a sparse representation.

Depending on the application, we seek either an exact solution for a noise-free model or
an approximate sparse reconstruction of the signal in the presence of noise:

b = Ax (1)

or
b = Ax+ n (2)
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where b ∈ Rm is the signal of interest, A ∈ Rm×n is a transformation matrix (or dictionary),
x ∈ Rn is the sparse coefficients vector and n ∈ Rm is a noise vector. Whenm < n the problem
is underdetermined and there is no unique solution. Evidently, additional constraints need to
be imposed on the signal model to find the solution of interest. In this sense, probably the most
studied and well-understood constraint is to assume a Gaussian distribution on the coefficients
and to minimise the l2 norm of the vector x. However, in applications such as compression for
example, it is more appropriate to impose the sparsity assumption on the coefficients, i.e. to
minimise the l0 norm of the vector x. Since l0 norm minimisation is known to be combinatorial
i.e. NP-hard, one can attempt to find an approximate solution using greedy algorithms such
as Matching Pursuit (MP) [9] or Orthogonal Matching Pursuit (OMP) [10]. Alternatively, the
sparsity assumption can be relaxed by imposing a Laplace distribution on the coefficients and
minimising the l1 norm, which can be solved using different convex optimisation methods.

In the SPARCO toolbox, the problems to be solved are given through a consistent interface
represented in the form of a problem structure that contains a measurement vector b, an
operator A and the other components of the test problem. The operator A is given in the
following form:

A = MB (3)

The measurement operator M describes how the signal was sampled and operator B
represents a basis with which the signal can be sparsely represented [5]. It is assumed that a
basis that can give a sparse solution is known in advance.

Successful application of a sparse decomposition depends on the dictionary used and
whether it matches the signal features [11]. Two main methods have emerged to determine a
dictionary within a sparse decomposition: dictionary selection and dictionary learning. Dic-
tionary selection entails choosing a pre-existing dictionary, such as the Fourier basis, a wavelet
basis or the modified discrete cosine basis, or constructing a redundant or overcomplete dictio-
nary by forming a union of bases (for example the Fourier and wavelet bases) so that different
properties of the signal can be represented [12]. Dictionary learning, on the other hand, aims
at deducing the dictionary from the training data, so that the atoms directly capture the spe-
cific features of the signal or set of signals [13]. This is key to finding a sparse representation
of new classes of data. Dictionary learning for a sparse representation can be formulated as a
problem of the following type:

min
A,X

∥∥Y−AX
∥∥2
F
subject to ∀i

∥∥xi
∥∥0
0
≤ s (4)

where Y is a matrix with vectors of training data and xi are sparse representations of the
training vectors. We want to choose a transform matrix textbfA that will minimise the
residual, given that the training data representation vectors xi are sparse with a maximum of
s non-zero coefficients.

Dictionary learning methods are often based on an alternating optimization strategy, in
which the dictionary is fixed, and a sparse signal decomposition is found; then the dictionary
elements are learned, while the signal representation is fixed. More recently, dictionary learning
methods for exact sparse representation based on l1 minimization [11, 14], and online learning
algorithms [8], have been proposed. For more details on sparse decompositions and dictionary
learning, see [15].

Reflecting high activity in the research area, many dictionary learning algorithms are
available, but currently no evaluation framework exists for testing them.



3 Design approach to SMALLbox Overview

The SMALLbox framework has been designed to fulfill two main goals: (1) to provide a set of
test problems that permit formative evaluation of the techniques and algorithms to be devel-
oped elsewhere, and (2) to be a framework within which to build demonstrator applications.
The design of the SMALLbox toolbox was constructed to allow easy portability of existing
algorithms and development of new algorithms, taking into account the experiences in using
toolboxes such as SPARCO [5] and SparseLab [1]. A graphical overview of the design of
SMALLbox is shown in Fig. 2.

Figure 2: Design of the Evaluation Framework

The main interoperability of the design is given through the “Problems” part which can
be defined either as a sparse representation or dictionary learning problem. When generating
a problem, some of the utilities can be used to decode a dataset and prepare a test signal or
a training set for dictionary learning. The dictionaries can be either defined or learned using
dictionary learning algorithms. In the former case, they can be given as implicit dictionaries,
using a combination of the given operators and structures, or explicitly in the form of a
dictionary matrix. In the latter case, they are learned from the training data, as described in
chapter 2. Once the dictionary is set in the problem, the problem is ready to be solved by one
of the sparse representation algorithms.

SMALLbox has been designed to enable an easy exchange of information and a comparison
of different modules developed through a unified API structure. The structure was made to
fulfill two main goals. The first goal is to separate a typical sparse signal processing problem
into three meaningful units:
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(a) problem specification (preparing data for learning, representation and reconstruction)
(b) dictionary learning (using a training set to learn the natural structures in the data)
(c) sparse representation (representing the signal with a pre-specified or learned dictionary).

The second goal is to provide a seamless connection between the three types of modules
and ease of communication of data between the problem, dictionary learning and sparse repre-
sentation parts of the structure. To achieve these goals, SMALLbox provides a “glue” structure
to allow algorithms from different toolboxes to be used with a common API.

The structure consists of three main sub-structures: Problem structure, DL (dictionary
learning) structure and solver structure. Since the Problem structure is designed to be back-
ward compatible with the SPARCO problem structure [5], it can be filled with SPARCO
generateProblem or one of the dictionary learning problems provided in SMALLbox. When
the specific problem is dictionary learning, one or more DL structures can be specified, so [6, 7]
or any other dictionary learning techniques can be compared using specified sets of parame-
ters. Finally, to sparsely represent the signal in a dictionary (either defined in the Problem
structure or learned in the previous step), one or more solver structures can be used to specify
any solver from [1–4] or any of the solvers provided in SMALLbox.

3.1 Generating Problems (Problem structure)

The Problem structure defines all necessary aspects of a problem to be solved. To be com-
patible with SPARCO, it needs to have five fields defined prior to any sparse representation
of the data:

A – a matrix or operator representing a dictionary in which the signal is sparse
b – a vector or matrix representing the signal or signals to be represented
reconstruct – a function handle to reconstruct the signal from coefficients
signalSize – the dimension of the signal
sizeA – if matrix A is given as an operator the size of the dictionary needs to be defined in

advance.

Other parameter fields can be used to further describe the problem and are useful for
either reconstruction of the signal or representation of the results. These parameter fields
can be generated by the SPARCO’s generateProblem function or the SMALLbox problem
functions. The new problems implemented in the SMALLbox version 2.0 are: Image De-
noising, Automatic Music Transcription, Audio Inpainting and Image Representation using
another image as a dictionary.

In the case of a dictionary learning problem, fields A and reconstruct are not defined
while generating the problem. Instead these are defined after the dictionary is learned and
prior to the sparse representation stage. In this case, field b needs to be given in matrix form
to represent the training data and another field p defining the number of dictionary elements
to be learned needs to be specified.

3.2 Dictionary Learning (DL structure)

The structure for dictionary learning—DL is a structure that defines the dictionary learning
algorithm to be used. It is initialised with a utility function SMALL_init_DL, which will define
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five mandatory fields:

toolbox – a field used to discriminate the API
name – the name of dictionary learning function from the particular toolbox
param – a field containing parameters for the particular DL technique and in the form given

by the toolbox API
D – a field where the learned dictionary will be stored
time – a field to store the time elapsed during the learning stage.

After the toolbox, name and param fields are set, the function SMALL_learn is called with
Problem and DL structures as inputs. According to the DL.toolbox field, the function calls
the DL.name algorithm with its API and outputs learned dictionary D and time spent. The
DL.param field contains parameters such as dictionary size, the number of iterations, the error
goal or similar depending on the particular algorithm used. To compare a new dictionary
learning algorithm against existing ones, the algorithm needs to be in the MATLAB path and
introduced to SMALLbox by defining two parameters: <Toolbox ID> and <Preferred API>
in the SMALL_learn function, where examples and a simple explanation are provided. Once
the new dictionary is learned, field A of the Problem structure is defined to be equal to DL.D
and also the reconstruction function is instructed to use this particular dictionary. In this
way, a SPARCO compatible Problem structure is defined and ready to be used by any of the
supported sparse representation algorithms for use.

3.3 Sparse Representation (solver structure)

Similar to dictionary learning, a structure containing the information required to run the
sparse representation problem needs to be initialised. In this case the SMALL_init_solver
function is called, which initialises and defines mandatory fields of the solver structure:

toolbox – a field with toolbox name (e.g. sparselab)
name – the name of solver from the particular toolbox (e.g. SolveOMP)
param – the parameters in the form given by the toolbox API
solution – the output representation
reconstructed – the signal reconstructed from the solution
time – the time taken in calculating the sparse representation.

With the input parameters of the solver structure set, the SMALL_solve function is called
with the Problem and solver structures as inputs. The function calls the solver.name
algorithm with the API specified by solver.toolbox and outputs the solution, reconstructed
and time fields.

To introduce a new sparse representation algorithm, the file containing its implementation
needs to be in the MATLAB path and the <Toolbox ID> and <Preferred API> parameters
need to be defined for the algorithm in the SMALL_solve function, as demonstrated through
the example in the section 4.5.1. As already mentioned, three solvers that can find a sparse
representation of the whole training set matrix in one go are included in SMALLbox (SMALL_MP,
SMALL_chol and SMALL_cgp).



4 SMALLbox Implementation

The evaluation framework is implemented in MATLAB. The latest release of SMALLbox can
be downloaded from http://small-project.eu and it is supplied in the form of an archive
containing the SMALLbox directory structure and necessary MATLAB scripts.

The complete code base with the latest changes can be found at https://code.
soundsoftware.ac.uk/hg/smallbox. For the development efforts we are using Mercurial
distributed version control system. If you are new to Mercurial, we recommend you to use the
EasyMercurial tool provided at http://easyhg.org/.

We also recommend you to check the SMALLbox project development pages were you can
find all relevant information about the SMALLbox: https://code.soundsoftware.ac.uk/
projects/smallbox:

Documentation and presentations:
https://code.soundsoftware.ac.uk/projects/smallbox/documents

Frequently Asked Questions:
https://code.soundsoftware.ac.uk/projects/smallbox/wiki/FAQ

Releases:
https://code.soundsoftware.ac.uk/projects/smallbox/files

Code repository:
https://code.soundsoftware.ac.uk/projects/smallbox/repository

Code documentation:
https://code.soundsoftware.ac.uk/embedded/smallbox/indexlgi.html

Once opened, the installation script can be found in the root directory. To enable easy
comparison with the existing state-of-the-art algorithms, installation scripts will download
third party toolboxes as required.

4.1 SMALLbox Installation

The SMALLbox installation involves the automatic download of several existing toolboxes.
These are described in section 4.3. Due to the automatic download of toolboxes you must
have an active internet connection.

Please note that within the toolboxes several MEX components included that must be
compiled. If you do not already have MEX setup, run mex -setup or type help mex in
the MATLAB command prompt. To install the toolbox run the command SMALLboxSetup
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from the MATLAB command prompt and follow the instructions. SMALLboxInit provides the
SMALLbox path initialisation and should be run after relaunching MATLAB or SMALLbox.

Once installed, there are two optional demo functions that can be run. Further information
can be found in the README.txt in the main SMALLbox directory.

4.2 SMALLbox directory structure

In version 2.0, SMALLbox has the following directory structure:

SMALLbox top directory – contains SMALLboxSetup.m, SMALLboxInit.m and README.txt
data – here all datasets used should be stored

• image
• video
• audio
• other

Problems – test problems for Dictionary Learning and Sparse representation
DL – all dictionary Learning algorithms developed inside of SMALLbox
solvers – all new solvers developed inside of SMALLbox
utilities — utilities such as decoders, players, GUI etc
toolboxes — third party toolboxes (sparco, sparselab, sparsify, ksvd, sksvd, etc)
examples — all example and demonstration scripts (SMALL_solver_test.m, etc)
config — configuration files that allow users to extend SMALLbox
doc — SMALLbox documentation

4.3 Toolboxes

To enable easy comparison with the existing state-of-the-art algorithms, during the installation
procedure SMALLbox checks the MATLAB path for existence of the following freely available
toolboxes. It then automatically downloads and installs all toolboxes that are not in the
MATLAB path, as required:

SPARCO (v.1.2) set of sparse representation problems [5]
SparseLab (v.2.1) set of sparse solvers [1]
Sparsify (v.0.4) set of greedy and hard thresholding algorithms [2]
SPGL1 (v.1.7) large-scale sparse reconstruction solver [3]
GPSR (v.6.0) Gradient projection for sparse reconstruction[4]
KSVD-box (v.13) and OMP-box (v.10) KSVD dictionary learning method [6]
KSVDS-box (v.11) and OMPS-box (v.1) sparse K-SVD dictionary learning method [7]
ALPS Algebraic Pursuit algorithms [16]
CVX MATLAB Software for Disciplined Convex Programming [17]1

1The list of 3rd party toolboxes included in SMALLbox version 2.0 beta
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4.4 Implementation of Sparse Representation and Dictionary
Learning Problems

Besides typical sparse representation and approximation problems provided by SPARCO tool-
box, in {SMALLbox root}/Problems/ it is also possible to find various sparse representation
and dictionary learning problems implemented in the scope of SMALLbox. All implemented
problems have the same API and are compatible with SPARCO API. There are two functions
related to every problem:

data = generate{ProblemName}Problem ( varagin ) ;

and

reconstructed = {ProblemName}_reconstruct (y , problemData ) ;

The first function is used to read the input data and generate the problem structure
according to the provided parameters. For the list of input parameters that can be specified
and the structure of output data please type:

help generate{ProblemName}Problem

The second function takes as input parameters sparse coefficients returned by sparse solver
and the problem data generated by generate{ProblemName} function and gives as an output
structure with usually two fields – reconstructed signal and PSNR or similar quality measure.
Again, for the structure of the output type:

help {ProblemName}_reconstruct

The list of new problems implemented (ProblemName, description) is the following:

AMT – dictionary learning for Automatic Music Transcription:gets an audio file and creates
its spectrogram, so that dictionary learning can be used to learn the dictionary of 88
atoms (i.e. piano notes) and activation matrix (sparse matrix of pressed piano keys).

AudioDenoise – gets an audio file and adds White Gaussian Noise with given noise level,
creates the training set for dictionary learning with a given frame size and overlapping.

AudioDeclipping – gets an audio file and clips all values above a given clipping thresh-
old, creates the training matrix for dictionary learning with a given frame size and
overlapping. The experiment is using Audio Inpainting Toolbox that is provided with
SMALLbox [18].

ImageDenoise – gets an Image file and adds White Gaussian Noise with given noise level,
creates the training set for dictionary learning with a given block size [6].

Pierre – given the source image represent the target image patches with combination of the
patches of the source image (see section 4.4.1).

4.4.1 Implementing a sparse representation problem example

In this section we give an example of how to use the Problem structure in order to enable
seamless communication with other parts of SMALLbox and to allow testing of different



12 User Documentation SMALLbox v2.0

algorithms included in SMALLbox on your problem. Implementation is of course dependent
on the particular sparse representation or dictionary learning problem that you want to solve.
The example Pierre_Villars_Example.m can be found in {SMALLbox root}/examples/←↩
Pierre Villars folder. This example is based on the experiment suggested by Professor
Pierre Vandergheynst at the SMALL meeting in Villars, hence the name.

To run this example simply run the following from the Matlab console:

>> SMALLboxInit
>> Pierre_Villiars_Example

The idea behind is to use patches from a source image as a dictionary in which we represent
a target image using the Matching Pursuit algorithm. This simple experiment is assembled
to give some idea about: How many patches from the source image are needed to form a good
dictionary, and whether the number of patches (dictionary elements) depends on the source
image used?

The example (({SMALLbox root}/Examples/Pierre Villars/Pierre_Villars_Example←↩
.m) firstly calls the Pierre_Problem function:

SMALL . Problem = generatePierreProblem ( ) ;

The generatePierreProblem function will first prompt the user to select the source (dic-
tionary) and target images, and will set the blocksize (image patch size) and dictsize (number
of source patches used for the representation) parameters. The code below shows that if the
blocksize and dictsize parameters are specified, an array of indices of equidistant patches to
be taken from the source image is calculated. Otherwise, a default setting is used, with the
block size set as 5x5 and dictionary size is specified by using all 5x5 sliding patches from the
source image.

f unc t i on data=generatePierreProblem ( src , trg , blocksize , dictsize ) ;

%% se t parameters %%
maxval = 255 ;
i f ~ e x i s t ( ' b l o c k s i z e ' , ' var ' ) | | isempty ( blocksize ) , blocksize = 5 ; end
i f ~ e x i s t ( ' d i c t s i z e ' , ' var ' ) | | isempty ( dictsize ) ,
dictsize = ( s i z e ( src , 1 )−blocksize+1)∗( s i z e ( src , 2 )−blocksize+1) ;
patch_idx=1:dictsize ;
e l s e
num_blocks_src=( s i z e ( src , 1 )−blocksize+1)∗( s i z e ( src , 2 )−blocksize+1) ;
patch_idx=1: f l o o r ( num_blocks_src/dictsize ) : dictsize∗ f l o o r ( num_blocks_src/←↩

dictsize ) ;
end
p = ndims ( src ) ;
i f ( p==2 && any ( s i z e ( src )==1) && length ( blocksize )==1)

p = 1 ;
end
% b l o c k s i z e %
i f ( numel ( blocksize )==1)

blocksize = ones (1 , p ) ∗blocksize ;
end

The dictionary data is formed by representing the source image in matrix form with each
column representing one of the normalised sliding patches from the source image, and similarly
the columns of the measurement matrix contain all distinct patches of the target image.
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%% crea t e d i c t i ona ry data
S=im2col ( src , blocksize , ' s l i d i n g ' ) ;

f o r j= 1 : s i z e (S , 2 )
S ( : , j )=S ( : , j ) . / norm( S ( : , j ) ) ;

end

%% observed patches matrix
% that are going to be decomposed on the d i c t i ona ry
T=im2col ( trg , blocksize , ' d i s t i n c t ' ) ;

Finally, the output structure is formed with all mandatory fields (except reconstruct—
Section 3.1) and some additional fields, such as original images:

%% output s t r u c tu r e %%
data . A = S ( : , patch_idx ) ;
data . b = T ;
data . m = s i z e (T , 1 ) ;
data . n = s i z e (T , 2 ) ;
data . p = s i z e ( data . A , 2 ) ;
data . blocksize=blocksize ;
data . maxval=maxval ;
data . spa r s e =1;
data . imageSrc = src ;
data . imageTrg = trg ;

The reconstruct field of the problem structure is not defined in the Pierre_Problem
function, as the dictionary changes later in the Pierre_Villars_Example function. Instead, it
is defined in the Pierre_reconstruct function ({SMALLbox root}/util/Pierre_recostruct.m/), which
takes the sparse coefficients and Problem structure as inputs and outputs the reconstructed
structure with reconstructed image and PSNR value:

f unc t i on reconstructed=Pierre_reconstruct (y , Problem )
imout=Problem . A∗y ;
% combine the patches in to r e con s t ruc t ed image

im=col2im ( imout , Problem . blocksize , s i z e ( Problem . imageTrg ) , ' d i s c t i n t ' ) ;

% bound the p i x e l va lue s to [ 0 , 2 5 5 ] range
im ( im<0)=0;
im ( im>255)=255;

%% output s t r u c tu r e image+psnr %%
reconstructed . image=im ;
reconstructed . psnr = 20∗ log10 ( Problem . maxval ∗ sq r t ( numel ( Problem . imageTrg←↩

( : ) ) ) / norm( Problem . imageTrg ( : )−im ( : ) ) ) ;
end

In the Pierre_Villars_Example function, when the SMALL.Problem has been defined, the
image is represented with ten different dictionary sizes using the Matching Pursuit algorithm
to find the three most correlated patches ({SMALLbox root}/solvers/SMALL_MP.m). The
variables dictsize, time and PSNR are then initialised to a size to contain a value from each
iteration:

n =10;
dictsize=ze ro s (1 , n ) ;
time = zero s (1 , n ) ;
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psnr = zero s (1 , n ) ;

In the main loop, for each value of dictionary size the problem.reconstruct parameter is
given as a function handle to the Pierre_reconstruct function discussed above, then the
solver parameters are set and the SMALL_solve function is called with the problem and solver
structures. With the output from the solver structure, the relevant indexed variables above
are set.

f o r i=1:n

% Set r e c on s t r u c t i on func t i on
SMALL . Problem . reconstruct=@ ( x ) Pierre_reconstruct (x , SMALL . Problem ) ;

% Def in ing the parameters spar s e r ep r e s en t a t i on
SMALL . solver ( i )=SMALL_init_solver ;
SMALL . solver ( i ) . toolbox='SMALL' ;
SMALL . solver ( i ) . name='SMALL_MP' ;

% Parameters needed f o r matching pur su i t (max number o f atoms i s 3
% and r e s i d u a l e r r o r goa l i s 1e−14

SMALL . solver ( i ) . param=sp r i n t f ( '%d , 1e−14 ' , 3 ) ;

% Represent the image us ing the source image patches as d i c t i ona ry
SMALL . solver ( i )=SMALL_solve ( SMALL . Problem , SMALL . solver ( i ) ) ;

dictsize (1 , i ) = s i z e ( SMALL . Problem . A , 2 ) ;
time (1 , i ) = SMALL . solver ( i ) . time ;
psnr (1 , i ) = SMALL . solver ( i ) . reconstructed . psnr ;

% Set new SMALL. Problem .A d i c t i ona ry tak ing every second patch from
% prev ious d i c t i ona ry
SMALL . Problem . A=SMALL . Problem . A ( : , 1 : 2 : dictsize (1 , i ) ) ;

%% show recons t ruc t ed image %%
f i g u r e ( 'Name ' , s p r i n t f ( ' d i c t s i z e=%d ' , dictsize (1 , i ) ) ) ;
imshow ( SMALL . solver ( i ) . reconstructed . image/SMALL . Problem . maxval ) ;
t i t l e ( s p r i n t f ( ' Reconstructed image , PSNR: %.2 f dB in %.2 f s ' , . . .

SMALL . solver ( i ) . reconstructed . psnr , SMALL . solver ( i ) . time ) ) ;
end

Finally, the time and PSNR values are plotted as functions of the number of source patches
used:

%% plo t time and psnr g iven d i c t i ona ry s i z e %%
f i g u r e ( 'Name ' , ' time and psnr ' ) ;
subp lot ( 1 , 2 , 1 ) ; p l o t ( dictsize ( 1 , : ) , time ( 1 , : ) , ' ro− ' ) ;
t i t l e ( 'Time vs number o f source image patches used ' ) ;
subp lot ( 1 , 2 , 2 ) ; p l o t ( dictsize ( 1 , : ) , psnr ( 1 , : ) , ' b∗− ' ) ;
t i t l e ( 'PSNR vs number o f source image patches used ' ) ;

From the above example, it is possible to see how the solver structure is initialised and
defined before calling SMALL_solve function (SMALLbox root/util/). The function will
find sparse coefficients of Problem.b in the dictionary Problem.A, measure the time spent
for calculating the representation and reconstruct the signal using the Problem.reconstruct
function handle. More about the SMALL_solve function will be discussed in the next section.

Once all calculations are finished, the time and PSNR values for different dictionary sizes
are plotted. We ran this experiment twice, first using barbara.png as a source for a dictio-
nary to represent peppers.png. In the second instance we used peppers.png as the dictionary
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(a) peppers.png (b) barbara.png

Figure 3: Two images used in the experiment ({SMALLbox root}/data/images/): peppers.png
and barbara.png

source to represent barbara.png image. Since the image barbara.png is much more detailed
than peppers.png, it is expected that less dictionary patches will be needed in the first ex-
periment than in the second. Figures 4 and 5 confirm this assumption. In the first experiment
(Figure 4), a dictionary of 8065 equidistant patches was enough to obtain the reconstructed
peppers image with PSNR of 32dB in 28.17 seconds. In the second experiment, even when we
used the whole peppers.png image as a dictionary (∼258000 patches), a maximum PSNR of
29.07dB in reconstructing barbara.png took more than 20 minutes to achieve.

4.5 Implementation of sparse solvers in SMALLbox

As SMALLbox is designed in a way that allows comparison of different solvers, apart from
solvers from the third party toolboxes, given in section 4.3, we also provide a number of solvers
developed within the SMALL project:

SMALL_MP – Matching Pursuit
SMALL_chol – Orthogonal Matching Pursuit with Cholesky updates
SMALL_pcgp – Partial Conjugate Gradient Pursuit
ompGabor, omp2Gabor – fast omp solvers for Gabor dictionary implemented as DCT+DST [18]
ALPS toolbox – Volkan Cevher’s accelerated hard thresholding methods [16]
mm1 – Iterative Soft Thresholding implemented as a part of Majorization Minimization

toolbox [19]

For more information about implemented solvers, their usage and their parameters, please
type:

help {solver Name}
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Figure 4: Representing pepper.png with variable number of patches from barbara.png image:
Time and PSNR values.

You can also consult examples given in {SMALLbox root}/examples/ directory to see how
solvers are used within the SMALLbox.

4.5.1 Testing a new solver on Sparco problems example

In this section, we explain how to introduce a new solver to SMALLbox and test it against
the provided algorithms.

A new solver with its own API needs to be defined in SMALL_solve.m ({SMALLbox root←↩
}/util/). This function takes the problem and solver structures as inputs, and outputs the
updated solver structure as the solution.

f unc t i on solver = SMALL_solve ( Problem , solver )

First, in this function, the problem structure is parsed and it is checked whether the
dictionary matrix is given in implicit or explicit form:

i f isa ( Problem . A , ' f l o a t ' )
A = Problem . A ;
SparseLab_A=Problem . A ;
m = s i z e ( Problem . A , 1 ) ; % m i s the no . o f rows .
n = s i z e ( Problem . A , 2 ) ; % n i s the no . o f columns .

e l s e
A = @ ( x ) Problem . A (x , 1 ) ; % The operator
AT = @ ( y ) Problem . A (y , 2 ) ; % and i t s t ranspose .
SparseLab_A =@ ( mode , m , n , x , I , dim ) SL_A ( Problem . A , mode , m , n , x , I←↩

, dim ) ;
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m = Problem . sizeA (1 ) ; % m i s the no . o f rows .
n = Problem . sizeA (2 ) ; % n i s the no . o f columns .

end
b = Problem . b ; % The r ight−hand−s i d e vec to r .

Here one can notice the slightly different function handles used with different implicit
dictionaries, due to the different APIs of SparseLab and SPARCO. The additional function {←↩
SMALLbox root}/util/SL_A.m is provided as a bridge between the different implicit dictionary
matrices used in SPARCO and SparseLab. Once the signal and dictionary are prepared, the
solver given by the name part of solver structure is called with the appropriate API as defined
by the toolbox field of the solver structure. Here is an example using the SparseLab and
sparsify toolboxes:

i f strcmpi ( solver . toolbox , ' s pa r s e l ab ' )
y =eva l ( [ solver . name , ' ( SparseLab_A , b , n , ' , solver . param , ' ) ; ' ] ) ;

e l s e i f strcmpi ( solver . toolbox , ' s p a r s i f y ' )
y =eva l ( [ solver . name , ' (b ,A, n , ' ' P_trans ' ' ,AT, ' , solver . param , ' ) ; ' ] ) ;

The param field of the solver structure can be either a string or a structure depending on
the API used for the particular toolbox.

The SMALL_solve function then updates the solver structure with the sparse coefficients
(solver.solution), the reconstructed signal (solver.reconstructed) and the time spent
constructing the sparse representation (solver.time):

Figure 5: Representing barbara.png with variable number of patches from pepper.png image:
Time and PSNR values.
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solver . time = cputime − start ;
f p r i n t f ( ' So lve r %s f i n i s h e d task in %2f seconds . \n ' , solver . name , solver .←↩

time ) ;
i f isfield ( Problem , ' spa r s e ' )&&(Problem . spa r s e==1)

solver . solution = y ;
e l s e

solver . solution = f u l l ( y ) ;
end
solver . reconstructed = Problem . reconstruct ( solver . solution ) ;

To introduce a new sparse representation algorithm to SMALLbox, the file containing the
code for the algorithm needs to be put into the MATLAB path. For example, one has a
function called My_dummy_OMP, to be used in the SMALLbox, with the following API call:

y=My_dummy_OMP ( size_y , dictionary , signal , error_goal , iter_num ) ;

A name needs to be defined for your toolbox in order to differentiate your API from other
toolboxes. Using the example name My_toolbox the code listed in Listing 1 needs to be
added to the SMALL_solve local configuration file (located in {SMALLbox Root}/config/←↩
SMALL_solve_config_local.m – refer to Sec. 5.1).

Listing 1: Code that needs to be added to the local configuration file in order add a new solver
e l s e i f strcmpi ( solver . toolbox , 'My_toolbox ' )

y =eva l ( [ solver . name , ' (n ,A, n , ' , solver . param , ' ) ; ' ] ) ;

To test the function, the SMALL_solver_test.m script from the {SMALLbox_root}/←↩
examples directory can be modified as follows:

SMALL . Problem = generateProblem (6 , 'P ' , 6 , 'm' , 270 , 'n ' ,1024 , ' show ' ) ;
i=1;
%%
% My_OMP t e s t t e s t
SMALL . solver ( i )=SMALL_init_solver ;
SMALL . solver ( i ) . toolbox='My_toolbox ' ;
SMALL . solver ( i ) . name='My_dummy_OMP' ;

% In the f o l l ow i n g s t r i n g a l l parameters except matrix , measurement vec to r
% and s i z e o f s o l u t i o n need to be s p e c i f i e d . I f you are not sure which
% parameters are needed f o r p a r t i c u l a r s o l v e r type " help <So lve r name>" in
% MATLAB command l i n e

SMALL . solver ( i ) . param=' 1e−14, 200 ' ;
SMALL . solver ( i )=SMALL_solve ( SMALL . Problem , SMALL . solver ( i ) ) ;

For comparison, another call is made to SparseLab’s SolveOMP function.

i=i+1;
% SolveOMP from SparseLab t e s t

SMALL . solver ( i )=SMALL_init_solver ;
SMALL . solver ( i ) . toolbox=' SparseLab ' ;
SMALL . solver ( i ) . name='SolveOMP ' ;

SMALL . solver ( i ) . param=' 200 , 0 , 0 , 0 , 1e−14 ' ;
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SMALL . solver ( i )=SMALL_solve ( SMALL . Problem , SMALL . solver ( i ) ) ;
SMALL_plot ( SMALL ) ;
end % func t i on SMALL_solver_test

Finally, the script can be run, and the plots of the coefficients and the reconstructed signal
output for two solvers as in Figure 6. Here, SMALL_chol function from {SMALLbox_root}/←↩
solvers directory was used instead of My_dummy_OMP.

Figure 6: SMALL_solver_test.m: Comparing SMALL_chol and SolveOMP from SparseLab on
SPARCO problem 6

4.6 Implementation of Dictionary Learning algorithms in SMALL-
box

As already mentioned, the main driving force behind SMALLbox was to develop a framework
for dictionary learning (DL) evaluation. Hence, we incorporated a number of standard methods
for sparse dictionary learning. In the SMALLbox version 1.0, it was possible to evaluate
your DL algorithms against KSVD and sparse KSVD dictionary learning that were provided
through the third party toolboxes ksvd [6] and ksvds [7].

In version 2.0, you can find implementations of some of the major state-of-the-art DL
algorithms:
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RLS-DLA (tollbox name: SMALL, algorithm name: SMALL_rlsdla)
Recursive Least Square Dictionary Learning Algorithm is the algorithm proposed by
Engang and Skretting in [20]. It is our implementation of the algorithm that uses Or-
thogonal Matching Pursuit (as implemented in KSVD toolbox) for coefficients updates
and dictionary update as presented in the paper. If you are using it to learn the dictio-
nary of image patches you can visualise the dictionary after desired number of iterations
(using the show_dict parameter).

Majorization Minimization Dictionary Learning (toolbox name: MMbox)
Mehrdad Yaghoobi toolbox that was used to generate the figures in [19] adapted for
SMALLbox. By passing a SMALLbox solver structure as one of the parameters to Dic-
tionary learning you can use any of the solvers provided for coefficients update step (see
some of the provided examples in {SMALL_root}/examples/MajorizationMinimization←↩
tests). Following dictionary updates are provided as a part of the MMbox (mod, map

and ksvd are provided for comparison purposes in MMbox and by no means represent the
optimised versions of the algorithms):

MM_cn – Regularized DL with column norm constrain [19]
MM_fn – Regularized DL with Frobenius norm constrain [19]
mod_cn – Method of Optimized Direction [21]
map_cn – Maximum A Posteriori dictionary update [22]
ksvd_cn – KSVD update [7]

Two Step Dictionary Learning (toolbox name: TwoStepDL)
Similar as with MMbox, Boris Mailhe provided dictionary update functions that he used
for his comparisons of convergence of KSVD [7], MOD [21], fixed step gradient descent
algorithm (Olshausen and Field algorithm) [23], optimal step gradient descent [24] and
LGD (Large step Gradient Descent) [25]. Again, you can define any of solvers provided
in SMALLbox for the coefficients update step and use any of dictionary updates pro-
vided by Boris function. In addition, you can also choose maximal mutual coherence
(coherence parameter) of dictionary atoms and the dictionary will be decorrelated after
every iteration [26]. Using the show-dict parameter, you can visualise the dictionary
after a desired number of iterations.

Please consult the example scripts in the {SMALL_root}/examples/ directory to learn more
how these algorithms are used within SMALLbox.

4.6.1 Testing Dictionary Learning Algorithms on an Image denoising Prob-
lem

The image denoising examples in SMALLbox are based on the KSVD image denoising example
forwarded in [6]. They show a modular and more flexible view to the problem enabling
easy comparison of dictionary learning algorithms and easy parameters testing. The image
denoising problem is performed through three separate modules:

• Problem Statement ({SMALLbox root}/Problems/GenerateImageDenoiseProblem.←↩
m)

• Dictionary Learning ({SMALLbox root}/util/SMALL_learn.m)
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• Image representation in the learned dictionary and denoising ({SMALLbox root} /←↩
util/SMALL_denoise.m)

There are three example scripts in {SMALLbox root}/examples/Image Denoising/ direc-
tory which use the above modules to:

• compare dictionary learning techniques (KSVD [9], sparse-KSVD [7], SPAMS [8]2) in
terms of PSNR and the time required to perform learning and denoising;

• compare the PSNR and the time requirements for learning using the KSVD and SPAMS
algorithms, with relation to the size of the training set (number of image patches) used;

• plot PSNR and the time taken for different values of the lambda parameter in SPAMS
dictionary learning.

In the first example, we compare the KSVD algorithm [6] with S-KSVD [7]. The main
idea presented in [7] is that if an implicit dictionary (in this case an overcomplete DCT dic-
tionary) is used as the base dictionary over which the sparse dictionary is learned, much
better computational time can be achieved while still keeping adaptability and the perfor-
mance characteristics of explicit dictionaries. This example can be run by calling the function
SMALL_ImgDenoise_DL_test_KSVDvsSKSVD.

The function generateImageDenoiseProblem is used to fill the fields of the SMALL.←↩
Problem structure. It will prompt the user for an image, then add the noise and generate
a training set of 40000 image patches with the default 8x8 blocksize before initialising a
dictionary of size 256 with an overcomplete DCT.

SMALL . Problem = generateImageDenoiseProblem ( ' ' , 40000) ;

A DL structure is initialised and the parameters required for the KSVD inserted before
calling SMALL_learn to start the dictionary learning:

%%
% Use KSVD Dict ionary Learning Algorithm to Learn overcomplete ←↩

d i c t i ona ry

SMALL . DL (1 )=SMALL_init_DL ( ) ;
SMALL . DL (1 ) . toolbox = 'KSVD' ;
SMALL . DL (1 ) . name = ' ksvd ' ;
% KSVD PARAMETERS (Type help ksvd in MATLAB prompt f o r more about ←↩

parameters ) .
Edata=sqr t ( prod ( SMALL . Problem . blocksize ) ) ∗ SMALL . Problem . sigma ∗ SMALL .←↩

Problem . gain ;
SMALL . DL (1 ) . param=struct ( ' Edata ' , Edata , ' i n i t d i c t ' , SMALL . Problem .←↩

initdict , . . .
' d i c t s i z e ' , SMALL . Problem . p , ' iternum ' , 20 , 'memusage ' , ' high ' ) ;

% Learn the d i c t i ona ry
SMALL . DL (1 ) = SMALL_learn ( SMALL . Problem , SMALL . DL (1 ) ) ;

A solver stucture is then initialised, and parameters inserted before SMALL_denoise is
called, with the problem and solver structures as fields, to perform the denoising:

2 An API for SPAMS [8] is included in SMALLbox together with examples using SPAMS, but due to
licensing issues this toolbox needs to be installed separately by the user.
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%%
% I n i t i a l i s i n g s o l v e r s t r u c tu r e f o r deno i s i ng
% Set t i ng s o l v e r s t r u c tu r e f i e l d s ( toolbox , name , param , so lu t i on ,
% recons t ruc t ed and time ) to zero va lue s
SMALL . solver (1 )=SMALL_init_solver ;

% Def in ing the parameters needed f o r image deno i s ing
SMALL . solver (1 ) . toolbox='ompbox ' ;
SMALL . solver (1 ) . name='omp2 ' ;
SMALL . solver (1 ) . param=struct ( . . .

' e p s i l o n ' , Edata , . . .
'maxatoms ' , maxatoms ) ;

% Denois ing the image − f i nd the spar s e s o l u t i o n in the l ea rned
% d i c t i ona ry f o r a l l patches in the image and the end i t uses
% r e c on s t r u c t i on func t i on to r e c on s t ru c t the patches and put them in to a
% denoised image

SMALL . solver (1 )=SMALL_denoise ( SMALL . Problem , SMALL . solver (1 ) ) ;

The following code creates another DL structure, this time for the KSVDS algorithm, and
inserts the relevant parameters.

% Use KSVDS Dict ionary Learning Algorithm to deno i s e image

% I n i t i a l i s i n g s o l v e r s t r u c tu r e
% Se t t i ng s o l v e r s t r u c tu r e f i e l d s ( toolbox , name , param , so lu t i on ,
% recons t ruc t ed and time ) to zero va lue s

SMALL . DL (2 )=SMALL_init_DL ( ) ;
SMALL . DL (2 ) . toolbox = 'KSVDS ' ;
SMALL . DL (2 ) . name = ' ksvds ' ;

% Def in ing the parameters f o r KSVDS
% In t h i s example we are l e a rn i ng 256 atoms in 20 i t e r a t i o n s , so that
% every patch in the t r a i n i n g s e t can be r epre s en ted with ta r g e t e r r o r ←↩

in
% L2−norm (EDataS) . We a l s o impose "double s p a r s i t y " − d i c t i ona ry i t s e l f
% has to be spar s e in the g iven base d i c t i ona ry ( Tdict − number o f
% nonzero e lements per atom) .
% Type help ksvds in MATLAB prompt f o r more opt ions .

EdataS=sqr t ( prod ( SMALL . Problem . blocksize ) ) ∗ SMALL . Problem . sigma ∗ SMALL .←↩
Problem . gain ;

SMALL . DL (2 ) . param=struct ( ' Edata ' , EdataS , ' Tdict ' , 6 , ' s t e p s i z e ' , 1 , . . .
' d i c t s i z e ' , SMALL . Problem . p , ' iternum ' , 20 , 'memusage ' , ' high ' ) ;

SMALL . DL (2 ) . param . initA = speye ( SMALL . Problem . p ) ;
SMALL . DL (2 ) . param . basedict {1} = odctdict (8 , 16 ) ;
SMALL . DL (2 ) . param . basedict {2} = odctdict (8 , 16 ) ;

When the parameters are set, a call is made to learn the dictionary. The dictionary learned
is returned in the DL structure. This is then assigned as the dictionary in the SMALL.Problem
structure, along with other parameters related to the DL structure.

% Learn the d i c t i ona ry
SMALL . DL (2 ) = SMALL_learn ( SMALL . Problem , SMALL . DL (2 ) ) ;

SMALL . Problem . A = SMALL . DL (2 ) . D ;
SMALL . Problem . basedict {1} = SMALL . DL (2 ) . param . basedict {1} ;
SMALL . Problem . basedict {2} = SMALL . DL (2 ) . param . basedict {2} ;



SMALLbox v2.0 User Documentation 23

A solver structure is then initialised and the parameters for this structure are added before
the small_denoise function, with the problem and solver structures, is called to perform
the denoising:

% I n i t i a l i s i n g s o l v e r s t r u c tu r e
SMALL . solver (2 )=SMALL_init_solver ;
SMALL . solver (2 ) . toolbox='ompsbox ' ;
SMALL . solver (2 ) . name='omps2 ' ;
SMALL . solver (2 ) . param=struct ( . . .

' e p s i l o n ' , Edata , . . .
'maxatoms ' , maxatoms ) ;

% Denois ing the image − f i nd the spar s e s o l u t i o n in the l ea rned
% d i c t i ona ry f o r a l l patches in the image and the end i t uses
% r e c on s t r u c t i on func t i on to r e c on s t ru c t the patches and put them in to a
% denoised image

SMALL . solver (2 )=SMALL_denoise ( SMALL . Problem , SMALL . solver (2 ) ) ;

Finally, the SMALL_ImgDeNoiseResult function is called to display the results from the
two dictionary learning algorithms:

SMALL_ImgDeNoiseResult ( SMALL ) ;

The SMALL_ImgDeNoiseResult function will show the original, noisy, and denoised images,
the learned dictionaries, the amounts of time required for learning and denoising and the PSNR
values (Figure 7). The results of this experiment support the claim given in [7]. De-noising in
the S-KSVD is faster while the PSNR is only 0.08 dB lower.

Figure 7: SMALLbox example results - KSVD [6] versus S-KSVD [7] in image de-noising
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4.6.2 A Dictionary Learning “toy example”

The file {SMALLbox root}/examples/SMALL_DL_test.m contains a very simple use-case of the
KSVD dictionary learning algorithm [6], which illustrates the advantages of learning an over-
complete set of atoms for sparse approximation over the classic principal component analysis
(PCA) transform.

First, a training set consisting of two-dimensional signals is generated, such that most of
the points follow three distinct directions when plotted on an x/y plane. This is illustrated in
Figure 8.
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Figure 8: A training set consisting of 2-dimensional signals that follow three distinct directions, and
representation atoms learned using either PCA or over-complete KSVD.

In the plot on the left side of Figure 8, the arrows depict the orthonormal basis learned
using the PCA algorithm. The vector pointing to the upper-right corner (the principal com-
ponent) identifies the direction that contains most of the variance of the dataset, whereas
the other vector (minor component) is orthogonal to the first. In this case, the dictionary is
complete, orthonormal and adapted to the dataset, but only the data that are lying along the
principal component direction can be efficiently approximated with one coefficient using the
corresponding atom.

On the other hand, the plot on the right of the figure shows an over-complete dictionary
whose atoms are learned using the KSVD algorithm. In this case, we set a sparsity constraint
Tdata which forces the data to be represented using only one coefficient:

SMALL . DL=SMALL_init_DL ( ) ;
SMALL . DL . toolbox = 'KSVDS ' ;
SMALL . DL . name = ' ksvds ' ;
SMALL . DL . params = struct ( ' data ' ,X , ' Tdata ' , 1 , ' d i c t S i z e ' , nAtoms ) ;
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The initial dictionary is defined randomly, leading to vectors that point to arbitrary direc-
tions. After the algorithm runs for a sufficient number of iterations, the vectors are updated
so that their directions lock to the three directions followed by the points in the dataset. In
this case, most of the training samples can be efficiently represented using only one atom of
the dictionary.

This simple example shows that moving from a complete, orthonormal transform to an
over-complete dictionary learned using a sparsity criterion leads to a set of basis functions
that are better adapted to the training set.



5 SMALLbox add–ons

It is possible to add functionalities to SMALLbox without affecting its core code by designing
add-on modules. These will be typically implementation of algorithms published in papers
and technical reports that use the SMALLbox framework, but that are not essential to the
toolbox itself.

5.1 Configuration files structure

The two main wrapper functions solve and learn have two separate configuration files in
the folder {SMALLbox Root}/config. In order to add a new entry to the solver or dictionary
learning configuration files you should create a copy the original configuration file with _local
in the name (for instance: the local version of the SMALL_learn_config.m file will be called
SMALL_learn_config_local.m). The caller function (either SMALL_learn or SMALL_solve),
at first looks for the existence of the local configuration file: if this file exists, it will run it;
otherwise it will run the default configuration file. The main advantages of using this approach
are as follows:

• if you are using a cloned repository version of SMALLbox, since the local versions of the
configuration files are not under version control, changing any of these will not prompt
you for uncommited changes in the repository;

• if you update SMALLbox to a later version, your local configuration file will not be
overwritten, since it is not distributed with SMALLbox, and thus preventing you from
losing any local changes you may have made.

A listing of the wrapper functions (and their configuration files) can be found in Ap-
pendix A. Please refer to Sec. 4.5.1 for a detailed example on how to add a new solver to
SMALLbox.

5.2 Add–on Example: Incoherent Dictionary Learning

This section refers to the incoherentdl algorithm code tagged as ver_1.1 in the project’s
Mercurial repository. To download this version please go to the project’s homepage in
http://code.soundsoftware.ac.uk/projects/incoherentdl.

The incoherent dictionary learning add-on includes algorithms for learning dictionaries
that are both adapted to the training data and that exhibit a low mutual coherence (defined
as the maximum absolute inner product between any two different atoms) [27]. It extends

26
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the functionalities of the SMALL_two_step_DL toolbox which is included in the SMALLBox
distribution, and is an example showing the capabilities of SMALLbox add–ons.

These are the steps needed to interface SMALLbox add-ons to the core SMALLbox dis-
tribution:

• Download and install the latest SMALLBox distribution from:
https://code.soundsoftware.ac.uk/projects/smallbox

• Download the add-on distribution. In this case, the incoherent dictionary learning source
is available from: https://code.soundsoftware.ac.uk/projects/incoherentdl

• Place the add-on code in any convenient location of your file system, and add this to
your MATLAB path.

• Modify the relevant files in the folder {SMALLBox Root}/config/ (see below)
• Run the SMALLboxInit.m script to set environmental variables.
• Run any function or script contained in the add-on.

In our case, incoherent dictionary learning extends SMALL_two_step_DL. In order to extend
this function, a local copy of this file was created, and named SMALL_incoherentDL.m. As can
be seen in Listing 2, a new dictionary update algorithm (mocod) is introduced. By having an
add–on specific version of this file we guarantee that the new algorithm works correctly with
the SMALLbox default settings, without having to make any changes to the core. The reasons
for this approach are the same as the ones supporting the functioning of the configuration files
(see Sec. 5.1).

Here the switch statement contains different decorrelation algorithms that are contained
in the add–on and are called by the function SMALL_two_step_DL. Whenever another add-on
was designed with a new decorrelation method, it could be simply interfaced to SMALLbox
by adding an additional case to the switch block.

In order to run the test functions included in the incoherentdl add–on, we need to
extend the list of available dictionary learning tools; this is done by adding a new case
to the SMALL learn wrapper function. To do so the user needs to copy the code snip-
pet that defines the new method (as shown in Listing 3), by copying the code snippet of
Listing 3 to the local SMALL_learn configuration file (located in SMALLBOX_PATH/config/←↩
SMALL_learn_config_local.m).

https://code.soundsoftware.ac.uk/projects/smallbox
https://code.soundsoftware.ac.uk/projects/incoherentdl
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Listing 2: Snippet from file SMALL_incoherentDL.m
110 % main loop %
111
112 f o r i = 1 : iternum
113 Problem . A = dico ;
114 solver = SMALL_solve ( Problem , solver ) ;
115
116 %DICTIONARY UPDATE STEP
117 i f strcmpi ( typeUpdate , 'mocod ' ) %i f update i s MOCOD cr ea t e ←↩

parameters s t r u c tu r e
118 mocodParams = struct ( ' ze ta ' , DL . param . zeta , . . . %coherence ←↩

r e g u l a r i z a t i o n f a c t o r
119 ' e ta ' , DL . param . eta , . . . %atoms norm r e g u l a r i z a t i o n f a c t o r
120 ' Dprev ' , dico ) ; %prev ious d i c t i ona ry
121 % dico = dico_update ( dico , s i g , s o l v e r . s o lu t i on , typeUpdate , f low ,←↩

l earn ingRate , mocodParams ) ;
122 i f ~isfield ( DL . param , ' decFcn ' ) , DL . param . decFcn = ' none ' ; end
123
124 dico = dico_update_mocod ( dico , sig , solver . solution , typeUpdate , flow←↩

, learningRate , mocodParams ) ;
125
126 e l s e
127 [ dico , solver . solution ] = dico_update ( dico , sig , solver . solution ,←↩

. . .
128 typeUpdate , flow , learningRate ) ;
129 dico = normcols ( dico ) ;
130 end
131
132 switch lower ( DL . param . decFcn )
133 case ' ink−svd '
134 dico = dico_decorr_symetric ( dico , mu , solver . solution ) ;
135 case ' grassmannian '
136 [ n m ] = s i z e ( dico ) ;
137 dico = grassmannian (n , m , [ ] , 0 . 9 , 0 . 9 9 , dico ) ;
138 case ' shrinkgram '
139 dico = shrinkgram ( dico , mu ) ;
140 case ' i t e r p r o j '
141 dico = iterativeprojections ( dico , mu , Problem . b1 , solver .←↩

solution ) ;
142 otherwise
143 end
144
145 % [ dico , s o l v e r . s o l u t i o n ] = dico_update ( dico , s i g , s o l v e r . s o lu t i on , . . .
146 % typeUpdate , f low , l earn ingRate ) ;
147 % i f ( d e c o r r e l a t e )
148 % dico = dico_decorr ( dico , mu, s o l v e r . s o l u t i o n ) ;
149 % end
150
151 i f ( ( show_dictionary )&&(mod (i , show_iter )==0))
152 dictimg = SMALL_showdict ( dico , [ 8 8 ] , . . .
153 round ( sq r t ( s i z e ( dico , 2 ) ) ) , round ( sq r t ( s i z e ( dico , 2 ) ) ) , ' l i n e s ' , '←↩

h ighcont ra s t ' ) ;
154 f i g u r e (2 ) ; imagesc ( dictimg ) ; colormap ( gray ) ; ax i s off ; a x i s image ;
155 pause ( 0 . 0 2 ) ;
156 end
157 end
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Listing 3: Code that needs to be added to the local configuration file in order to run incoherentdl
e l s e i f strcmpi ( DL . toolbox , ' SMALL_incoherentDL ' )

DL=SMALL_incoherentDL ( Problem , DL ) ;

% we need to make sure that columns are normal i sed to
% uni t l enght .
f o r i = 1 : s i z e ( DL . D , 2 )

DL . D ( : , i )=DL . D ( : , i ) /norm( DL . D ( : , i ) ) ;
end
D = DL . D ;
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A Appendix: SMALLbox Wrappers

There are two main wrapper functions in SMALLbox: SMALL_solve and SMALL_learn. These
provide the necessary interface to add new sparse approximation and dictionary learning tools
without the need of modifying the core. To see an example please refer to 5.

Each wrapper function has its corespondent configuration file, as detailed in Section 5.1.
The configuration files are located in the config folder.

A.1 Solvers wrapper function

f unc t i on solver = SMALL_solve ( Problem , solver )
%% SMALL spar s e s o l v e r c a l l e r func t i on
%
% Function ge t s as input SMALL s t ru c tu r e that conta in s SPARCO problem to
% be solved , name o f the too lbox and so lve r , and parameters f i l e f o r
% pa r t i c u l a r s o l v e r .
%
% Outputs are so lu t i on , r e con s t ruc t ed s i g n a l and time spent

% Centre f o r D i g i t a l Music , Queen Mary , Un ive r s i ty o f London .
% This f i l e copyr ight 2009 Ivan Damnjanovic .
%
% This program i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/ or
% modify i t under the terms o f the GNU General Publ ic L i cense as
% publ i shed by the Free Software Foundation ; e i t h e r v e r s i on 2 o f the
% License , or ( at your opt ion ) any l a t e r v e r s i on . See the f i l e
% COPYING inc luded with t h i s d i s t r i b u t i o n f o r more in fo rmat ion .
%
%%

SMALLboxInit

i f isa ( Problem . A , ' f l o a t ' )
A = Problem . A ;
SparseLab_A=Problem . A ;
m = s i z e ( Problem . A , 1 ) ; % m i s the no . o f rows .
n = s i z e ( Problem . A , 2 ) ; % n i s the no . o f columns .

e l s e
A = @ ( x ) Problem . A (x , 1 ) ; % The operator
AT = @ ( y ) Problem . A (y , 2 ) ; % and i t s t ranspose .
SparseLab_A =@ ( mode , m , n , x , I , dim ) SL_A ( Problem . A , mode , m , n , x , I , ←↩

dim ) ;
m = Problem . sizeA (1 ) ; % m i s the no . o f rows .
n = Problem . sizeA (2 ) ; % n i s the no . o f columns .

end
% i f s i g n a l that needs to be r epre s en ted i s d i f f e r e n t then t r a i n i n g s e t f o r
% d i c t i ona ry l e a rn i ng i t should be s to r ed in Problem . b1 matix
i f isfield ( Problem , ' b1 ' )

33
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b = Problem . b1 ;
e l s e

b = Problem . b ; % The r ight−hand−s i d e vec to r .
end
%%
i f ( solver . profile )

f p r i n t f ( ' \ nStar t ing s o l v e r %s . . . \n ' , solver . name ) ;
end

start=cputime ;
tStart=t i c ;

%% s o l v e r s c on f i g u r a t i on
% t e s t i f the r e i s a l o c a l l y modi f i ed ve r s i on o f the c on f i g
% otherwi se reads the " d e f au l t " c on f i g f i l e
i f e x i s t ( fullfile ( SMALL_path , ' c on f i g /SMALL_solve_config_local .m' ) , ' f i l e ' ) ==←↩

2
run ( fullfile ( SMALL_path , ' c on f i g /SMALL_solve_config_local .m' ) ) ;

e l s e
run ( fullfile ( SMALL_path , ' c on f i g /SMALL_solve_config .m' ) ) ;

end

%%
% Sparse r ep r e s en t a t i on time
tElapsed=toc ( tStart ) ;
solver . time = cputime − start ;
i f ( solver . profile )

f p r i n t f ( ' So lve r %s f i n i s h e d task in %2f seconds ( cpu time ) . \n ' , solver .←↩
name , solver . time ) ;

f p r i n t f ( ' So lve r %s f i n i s h e d task in %2f seconds ( t i c−toc time ) . \n ' , ←↩
solver . name , tElapsed ) ;

end
solver . time=tElapsed ;
% ge t ing around out o f memory problem when conver t ing big matrix from
% spar s e to f u l l . . .

i f isfield ( Problem , ' spa r s e ' )&&(Problem . spa r s e==1)
solver . solution = y ;

e l s e
solver . solution = f u l l ( y ) ;

end
i f isfield ( Problem , ' r e c on s t ru c t ' )

% Reconstruct the s i g n a l from the s o l u t i o n
solver . reconstructed = Problem . reconstruct ( solver . solution ) ;

end
end

%% Conf igurat ion f i l e used in SMALL_solve
%
% Please DO NOT use t h i s f i l e to change the s o l v e r s used in SMALLBox
% I f you want to change the s o l v e r s c r e a t e a copy
% of t h i s f i l e named ' SMALL_learn_config_local .m'
%
% Please r e f e r to the documentation f o r f u r t h e r in fo rmat ion

% Centre f o r D i g i t a l Music , Queen Mary , Un ive r s i ty o f London .
% This f i l e copyr ight 2009 Ivan Damnjanovic .
%
% This program i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/ or
% modify i t under the terms o f the GNU General Publ ic L i cense as
% publ i shed by the Free Software Foundation ; e i t h e r v e r s i on 2 o f the
% License , or ( at your opt ion ) any l a t e r v e r s i on . See the f i l e
% COPYING inc luded with t h i s d i s t r i b u t i o n f o r more in fo rmat ion .
%
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%%

i f strcmpi ( solver . toolbox , ' s pa r s e l ab ' )
y = eva l ( [ solver . name , ' ( SparseLab_A , b , n , ' , solver . param , ' ) ; ' ] ) ;

e l s e i f strcmpi ( solver . toolbox , ' s p a r s i f y ' )
i f isa ( Problem . A , ' f l o a t ' )

y = eva l ( [ solver . name , ' (b , A, n , ' , solver . param , ' ) ; ' ] ) ;
e l s e

y = eva l ( [ solver . name , ' (b , A, n , ' ' P_trans ' ' , AT, ' , solver . param , ' ) ; ' ] )←↩
;

end
e l s e i f ( strcmpi ( solver . toolbox , ' spg l1 ' ) | | strcmpi ( solver . toolbox , ' gpsr ' ) )

y = eva l ( [ solver . name , ' (b , A, ' , solver . param , ' ) ; ' ] ) ;
e l s e i f ( strcmpi ( solver . toolbox , 'SPAMS' ) )

y = eva l ( [ solver . name , ' (b , A, s o l v e r . param) ; ' ] ) ;
e l s e i f ( strcmpi ( solver . toolbox , 'SMALL' ) )

i f isa ( Problem . A , ' f l o a t ' )
y = eva l ( [ solver . name , ' (A, b , n , ' , solver . param , ' ) ; ' ] ) ;

e l s e
y = eva l ( [ solver . name , ' (A, b , n , ' , solver . param , ' ,AT) ; ' ] ) ;

end
e l s e i f ( strcmpi ( solver . toolbox , ' ompbox ' ) )

G=A ' ∗ A ;
epsilon=solver . param . epsilon ;
maxatoms=solver . param . maxatoms ;
y = eva l ( [ solver . name , ' (A, b , G, eps i l on , ' 'maxatoms ' ' ,maxatoms , ' ' checkd i c t '←↩

' , ' ' o f f ' ' ) ; ' ] ) ;
% dan i e l eb : added c a l l to omp func t i on s with f a s t implementation .

e l s e i f ( strcmpi ( solver . toolbox , ' ompbox_fast ' ) )
DtX=A ' ∗ b ;
XtX = sum( b . ∗ b ) ;
G=A ' ∗ A ;
epsilon=solver . param . epsilon ;
maxatoms=solver . param . maxatoms ;
y = eva l ( [ solver . name , ' (DtX, XtX, G, eps i l on , ' 'maxatoms ' ' ,maxatoms , ' '←↩

checkd i c t ' ' , ' ' o f f ' ' ) ; ' ] ) ;
e l s e i f ( strcmpi ( solver . toolbox , ' ompsbox ' ) )

basedict = Problem . basedict ;
i f i s s p a r s e ( Problem . A )

A = Problem . A ;
e l s e

A = spar s e ( Problem . A ) ;
end
G = dicttsep ( basedict , A , dictsep ( basedict , A , speye ( s i z e (A , 2 ) ) ) ) ;
epsilon=solver . param . epsilon ;
maxatoms=solver . param . maxatoms ;
y = eva l ( [ solver . name , ' ( based ic t , A, b , G, eps i l on , ' 'maxatoms ' ' ,maxatoms , ' '←↩

checkd i c t ' ' , ' ' o f f ' ' ) ; ' ] ) ;
Problem . spa r s e =1;

e l s e i f ( strcmpi ( solver . toolbox , 'ALPS ' ) )
i f ~isa ( Problem . A , ' f l o a t ' )

% ALPS does not accept imp l i c i t d i c t i ona ry d e f i n i t i o n
A = opToMatrix ( Problem . A , 1) ;

end
[ y , numiter , time , y_path ] = wrapper_ALPS_toolbox (b , A , solver . param ) ;

e l s e i f ( strcmpi ( solver . toolbox , 'MMbox ' ) )
i f ~isa ( Problem . A , ' f l o a t ' )

% MMbox does not accept imp l i c i t d i c t i ona ry d e f i n i t i o n
A = opToMatrix ( Problem . A , 1) ;

end

[ y , cost ] = wrapper_mm_solver (b , A , solver . param ) ;

%%
% Please do not make any changes to the ' SMALL_solve_config .m' f i l e
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% Al l the changes should be done to your l o c a l c on f i g u r a t i on f i l e
% named ' SMALL_solve_config_local .m'
%
% To int roduce new spar s e r ep r e s en t a t i on a lgor i thm put the f i l e s in
% your Matlab path . Next , unique name <TolboxID> f o r your too lbox and
% p r e f f e r d API <Preffered_API> needs to be de f ined .
%
% e l s e i f s t rcmpi ( s o l v e r . toolbox , '<ToolboxID >')
%
% % − Evaluate the func t i on ( s o l v e r . name − de f ined in the main ) with
% % parameters g iven above
%
% y = eva l ( [ s o l v e r . name, '( < Preffered_API >) ; ' ] ) ;

e l s e
printf ( ' \nToolbox has not been r e g i s t e r e d . P lease change SMALL_solver f i l e←↩

. \ n ' ) ;
r e turn

end

A.2 Dictionary Learning wrapper function

f unc t i on DL = SMALL_learn ( Problem , DL )
%% SMALL Dict ionary Learning
%
% Function ge t s as input Problem and Dict ionary Learning (DL) s t r u c t u r e s
% In Problem s t ru c tu r e f i e l d b with the t r a i n i n g s e t needs to be de f ined
% In DL f i e l d s with name o f the too lbox and so lve r , and parameters f i l e
% f o r p a r t i c u l a r d i c t i ona ry l e a rn i ng technique needs to be pre sent .
%
% Outputs are Learned d i c t i ona ry and time spent as a part o f DL s t ru c tu r e

%
% Centre f o r D i g i t a l Music , Queen Mary , Un ive r s i ty o f London .
% This f i l e copyr ight 2009 Ivan Damnjanovic .
%
% This program i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/ or
% modify i t under the terms o f the GNU General Publ ic L i cense as
% publ i shed by the Free Software Foundation ; e i t h e r v e r s i on 2 o f the
% License , or ( at your opt ion ) any l a t e r v e r s i on . See the f i l e
% COPYING inc luded with t h i s d i s t r i b u t i o n f o r more in fo rmat ion .
%%

SMALLboxInit

i f ( DL . profile )
f p r i n t f ( ' \ nStar t ing Dict ionary Learning %s . . . \n ' , DL . name ) ;

end

start=cputime ;
tStart=t i c ;

%% too lbox con f i g u r a t i on
% t e s t i f the r e i s a l o c a l l y modi f i ed ve r s i on o f the c on f i g
% otherwi se reads the " d e f au l t " c on f i g f i l e
i f e x i s t ( fullfile ( SMALL_path , ' c on f i g /SMALL_learn_config_local .m' ) , ' f i l e ' ) ==←↩

2
printf ( ' \n\nSMALL_learn : Using l o c a l c on f i g u r a t i on f i l e . \ n\n ' ) ;
run ( fullfile ( SMALL_path , ' c on f i g /SMALL_learn_config_local .m' ) ) ;

e l s e
printf ( ' \n\nSMALL_learn : Using d e f au l t c on f i g u r a t i on f i l e . \ n\n ' ) ;
run ( fullfile ( SMALL_path , ' c on f i g /SMALL_learn_config .m' ) ) ;
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end

%%
% Dict ionary Learning time
tElapsed=toc ( tStart ) ;
DL . time = cputime − start ;
i f ( DL . profile )

f p r i n t f ( ' \n%s f i n i s h e d task in %2f seconds ( cpu time ) . \n ' , DL . name , DL .←↩
time ) ;

f p r i n t f ( ' \n%s f i n i s h e d task in %2f seconds ( t i c−toc time ) . \n ' , DL . name , ←↩
tElapsed ) ;

end
DL . time=tElapsed ;
% I f d i c t i ona ry i s g iven as a spar s e matrix change i t to f u l l

DL . D = f u l l ( D ) ;

end

%% Conf igurat ion f i l e used in SMALL_learn
%
% Please DO NOT use t h i s f i l e to change the d i c t i ona ry l e a rn i ng a lgor i thms ←↩

in SMALLBox
% I f you want to change the d i c t i ona ry l e a rn i ng a lgor i thms
% cr ea t e a copy o f t h i s f i l e named ' SMALL_learn_config_local .m'
%
% Please r e f e r to the documentation f o r f u r t h e r in fo rmat ion

% Centre f o r D i g i t a l Music , Queen Mary , Un ive r s i ty o f London .
% This f i l e copyr ight 2009 Ivan Damnjanovic .
%
% This program i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/ or
% modify i t under the terms o f the GNU General Publ ic L i cense as
% publ i shed by the Free Software Foundation ; e i t h e r v e r s i on 2 o f the
% License , or ( at your opt ion ) any l a t e r v e r s i on . See the f i l e
% COPYING inc luded with t h i s d i s t r i b u t i o n f o r more in fo rmat ion .
%
%%

i f strcmpi ( DL . toolbox , 'KSVD' )
param=DL . param ;
param . data=Problem . b ;

D = eva l ( [ DL . name , ' ( param) ' ] ) ;%, ' ' t ' ' , 5) ; ' ] ) ;
e l s e i f strcmpi ( DL . toolbox , 'KSVDS ' )

param=DL . param ;
param . data=Problem . b ;

D = eva l ( [ DL . name , ' ( param , ' ' t ' ' , 5) ; ' ] ) ;
e l s e i f strcmpi ( DL . toolbox , 'SPAMS' )

X = Problem . b ;
param=DL . param ;

D = eva l ( [ DL . name , ' (X, param) ; ' ] ) ;
% As some ve r s i on s o f SPAMS does not produce un i t norm column
% d i c t i o n a r i e s , we need to make sure that columns are normal i sed to
% uni t l enght .

f o r i = 1 : s i z e (D , 2 )
D ( : , i )=D ( : , i ) /norm( D ( : , i ) ) ;

end
e l s e i f strcmpi ( DL . toolbox , 'SMALL' )
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X = Problem . b ;
param=DL . param ;

D = eva l ( [ DL . name , ' (X, param) ; ' ] ) ;
% we need to make sure that columns are normal i sed to
% uni t l enght .

f o r i = 1 : s i z e (D , 2 )
D ( : , i )=D ( : , i ) /norm( D ( : , i ) ) ;

end

e l s e i f strcmpi ( DL . toolbox , 'TwoStepDL ' )

DL=SMALL_two_step_DL ( Problem , DL ) ;

% we need to make sure that columns are normal i sed to
% uni t l enght .

f o r i = 1 : s i z e ( DL . D , 2 )
DL . D ( : , i )=DL . D ( : , i ) /norm( DL . D ( : , i ) ) ;

end
D = DL . D ;

e l s e i f strcmpi ( DL . toolbox , 'MMbox ' )

DL = wrapper_mm_DL ( Problem , DL ) ;

% we need to make sure that columns are normal i sed to
% uni t l enght .

f o r i = 1 : s i z e ( DL . D , 2 )
DL . D ( : , i )=DL . D ( : , i ) /norm( DL . D ( : , i ) ) ;

end
D = DL . D ;

%%
% Please do not make any changes to the ' SMALL_learn_config .m' f i l e
% Al l the changes should be done to your l o c a l c on f i g u r a t i on f i l e
% named ' SMALL_learn_config_local .m'
%
% To int roduce new d i c t i ona ry l e a rn i ng technique put the f i l e s in
% your Matlab path . Next , unique name <TolboxID> f o r your too lbox needs
% to be de f ined and a l s o p r e f f e r d API f o r too lbox func t i on s <Preffered_API>
%
% e l s e i f s t rcmpi (DL. toolbox , '<ToolboxID >')
% % This i s an example o f API that can be used :
% % − get t r a i n i n g s e t from Problem part o f s t r u c tu r e
% % − a s s i gn parameters de f ined in the main program
%
% X = Problem . b ;
% param=DL. param ;
%
% % − Evaluate the func t i on (DL. name − de f ined in the main ) with
% % parameters g iven above
%
% D = eva l ( [DL. name, '( < Preffered_API >) ; ' ] ) ;

e l s e
printf ( ' \nToolbox has not been r e g i s t e r e d . P lease change SMALL_learn f i l e←↩

. \ n ' ) ;
r e turn

end
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