idamnjanovic@6: %% DICTIONARY LEARNING FOR AUTOMATIC MUSIC TRANSCRIPTION EXAMPLE 1 idamnjanovic@6: % This file contains an example of how SMALLbox can be used to test diferent idamnjanovic@6: % dictionary learning techniques in Automatic Music Transcription problem. idamnjanovic@6: % It calls generateAMT_Learning_Problem that will let you to choose midi, idamnjanovic@6: % wave or mat file to be transcribe. If file is midi it will be first idamnjanovic@6: % converted to wave and original midi file will be used for comparison with idamnjanovic@6: % results of dictionary learning and reconstruction. idamnjanovic@6: % The function will generarte the Problem structure that is used to learn idamnjanovic@6: % Problem.p notes spectrograms from training set Problem.b using idamnjanovic@6: % dictionary learning technique defined in DL structure. idamnjanovic@6: % idamnjanovic@6: % Ivan Damnjanovic 2010 idamnjanovic@6: %% idamnjanovic@6: idamnjanovic@6: clear; idamnjanovic@6: idamnjanovic@6: idamnjanovic@6: % Defining Automatic Transcription of Piano tune as Dictionary Learning idamnjanovic@6: % Problem idamnjanovic@6: idamnjanovic@6: SMALL.Problem = generateAMT_Learning_Problem(); idamnjanovic@6: idamnjanovic@6: TPmax=0; idamnjanovic@6: idamnjanovic@6: for i=1:10 idamnjanovic@6: idamnjanovic@6: %% idamnjanovic@6: % Use KSVD Dictionary Learning Algorithm to Learn 88 notes (defined in idamnjanovic@6: % SMALL.Problem.p) using sparsity constrain only idamnjanovic@6: idamnjanovic@6: % Initialising Dictionary structure idamnjanovic@6: % Setting Dictionary structure fields (toolbox, name, param, D and time) idamnjanovic@6: % to zero values idamnjanovic@6: idamnjanovic@6: SMALL.DL(i)=SMALL_init_DL(i); idamnjanovic@6: idamnjanovic@6: % Defining fields needed for dictionary learning idamnjanovic@6: idamnjanovic@6: SMALL.DL(i).toolbox = 'KSVD'; idamnjanovic@6: SMALL.DL(i).name = 'ksvd'; idamnjanovic@6: idamnjanovic@6: % Defining the parameters for KSVD idamnjanovic@6: % In this example we are learning 88 atoms in 100 iterations. idamnjanovic@6: % our aim here is to show how individual parameters can be tested in idamnjanovic@6: % the AMT problem. We test ten different values for sparity (Tdata) idamnjanovic@6: % in KSVD algorithm. idamnjanovic@6: % Type help ksvd in MATLAB prompt for more options. idamnjanovic@6: Tdata(i)=i; idamnjanovic@6: SMALL.DL(i).param=struct('Tdata', Tdata(i), 'dictsize', SMALL.Problem.p, 'iternum', 100); idamnjanovic@6: idamnjanovic@6: % Learn the dictionary idamnjanovic@6: idamnjanovic@6: SMALL.DL(i) = SMALL_learn(SMALL.Problem, SMALL.DL(i)); idamnjanovic@6: idamnjanovic@6: % Set SMALL.Problem.A dictionary and reconstruction function idamnjanovic@6: % (backward compatiblity with SPARCO: solver structure communicate idamnjanovic@6: % only with Problem structure, ie no direct communication between DL and idamnjanovic@6: % solver structures) idamnjanovic@6: idamnjanovic@6: SMALL.Problem.A = SMALL.DL(i).D; idamnjanovic@6: SMALL.Problem.reconstruct = @(x) SMALL_midiGenerate(x, SMALL.Problem); idamnjanovic@6: idamnjanovic@6: %% idamnjanovic@6: % Initialising solver structure idamnjanovic@6: % Setting solver structure fields (toolbox, name, param, solution, idamnjanovic@6: % reconstructed and time) to zero values idamnjanovic@6: % As an example, SPAMS (Julien Mairal 2009) implementation of LARS idamnjanovic@6: % algorithm is used for representation of training set in the learned idamnjanovic@6: % dictionary. idamnjanovic@6: idamnjanovic@6: SMALL.solver(1)=SMALL_init_solver; idamnjanovic@6: idamnjanovic@6: % Defining the parameters needed for sparse representation idamnjanovic@6: idamnjanovic@6: SMALL.solver(1).toolbox='SPAMS'; idamnjanovic@6: SMALL.solver(1).name='mexLasso'; idamnjanovic@6: idamnjanovic@6: %% idamnjanovic@6: % Initialising solver structure idamnjanovic@6: % Setting solver structure fields (toolbox, name, param, solution, idamnjanovic@6: % reconstructed and time) to zero values idamnjanovic@6: % As an example, SPAMS (Julien Mairal 2009) implementation of LARS idamnjanovic@6: % algorithm is used for representation of training set in the learned idamnjanovic@6: % dictionary. idamnjanovic@6: idamnjanovic@6: SMALL.solver(1).param=struct(... idamnjanovic@6: 'lambda', 2,... idamnjanovic@6: 'pos', 1,... idamnjanovic@6: 'mode', 2); idamnjanovic@6: idamnjanovic@6: % Call SMALL_soolve to represent the signal in the given dictionary. idamnjanovic@6: % As a final command SMALL_solve will call above defined reconstruction idamnjanovic@6: % function to reconstruct the training set (Problem.b) in the learned idamnjanovic@6: % dictionary (Problem.A) idamnjanovic@6: idamnjanovic@6: idamnjanovic@6: SMALL.solver(1)=SMALL_solve(SMALL.Problem, SMALL.solver(1)); idamnjanovic@6: idamnjanovic@6: %% idamnjanovic@6: % Analysis of the result of automatic music transcription. If groundtruth idamnjanovic@6: % exists, we can compare transcribed notes and original and get usual idamnjanovic@6: % True Positives, False Positives and False Negatives measures. idamnjanovic@6: idamnjanovic@6: AMT_res(i) = AMT_analysis(SMALL.Problem, SMALL.solver(1)); idamnjanovic@6: if AMT_res(i).TP>TPmax idamnjanovic@6: TPmax=AMT_res(i).TP; idamnjanovic@6: BLmidi=SMALL.solver(1).reconstructed.midi; idamnjanovic@6: max=i; idamnjanovic@6: end idamnjanovic@6: end % end of for loop idamnjanovic@6: idamnjanovic@6: %% idamnjanovic@6: % Plot results and save midi files idamnjanovic@6: idamnjanovic@6: figAMTbest=SMALL_AMT_plot(SMALL, AMT_res(max)); idamnjanovic@6: idamnjanovic@6: resFig=figure('Name', 'Automatic Music Transcription KSVD Sparsity TEST'); idamnjanovic@6: idamnjanovic@6: subplot (3,1,1); plot(Tdata(:), [AMT_res(:).TP], 'ro-'); idamnjanovic@6: title('True Positives vs Tdata'); idamnjanovic@6: idamnjanovic@6: subplot (3,1,2); plot(Tdata(:), [AMT_res(:).FN], 'ro-'); idamnjanovic@6: title('False Negatives vs Tdata'); idamnjanovic@6: idamnjanovic@6: subplot (3,1,3); plot(Tdata(:), [AMT_res(:).FP], 'ro-'); idamnjanovic@6: title('False Positives vs Tdata'); idamnjanovic@6: idamnjanovic@6: FS=filesep; idamnjanovic@6: [pathstr1, name, ext, versn] = fileparts(which('SMALLboxSetup.m')); idamnjanovic@6: cd([pathstr1,FS,'results']); idamnjanovic@6: [filename,pathname] = uiputfile({' *.mid;' },'Save midi'); idamnjanovic@6: if filename~=0 writemidi(BLmidi, [pathname,FS,filename]);end idamnjanovic@6: [filename,pathname] = uiputfile({' *.fig;' },'Save figure TP/FN/FP vs Tdata'); idamnjanovic@6: if filename~=0 saveas(resFig, [pathname,FS,filename]);end idamnjanovic@6: idamnjanovic@6: [filename,pathname] = uiputfile({' *.fig;' },'Save BEST AMT figure'); idamnjanovic@6: if filename~=0 saveas(figAMTbest, [pathname,FS,filename]);end idamnjanovic@6: