Mercurial > hg > smallbox
view util/Rice Wavelet Toolbox/mdwt_r.c @ 246:cef4500b936f ver_2.1
Merge
author | luisf <luis.figueira@eecs.qmul.ac.uk> |
---|---|
date | Wed, 31 Oct 2012 12:10:13 +0000 |
parents | f69ae88b8be5 |
children |
line wrap: on
line source
/* File Name: MDWT.c Last Modification Date: 06/14/95 13:15:44 Current Version: MDWT.c 2.4 File Creation Date: Wed Oct 19 10:51:58 1994 Author: Markus Lang <lang@jazz.rice.edu> Copyright (c) 2000 RICE UNIVERSITY. All rights reserved. Created by Markus Lang, Department of ECE, Rice University. This software is distributed and licensed to you on a non-exclusive basis, free-of-charge. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistribution of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistribution in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. All advertising materials mentioning features or use of this software must display the following acknowledgment: This product includes software developed by Rice University, Houston, Texas and its contributors. 4. Neither the name of the University nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY WILLIAM MARSH RICE UNIVERSITY, HOUSTON, TEXAS, AND CONTRIBUTORS AS IS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL RICE UNIVERSITY OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTIONS) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE), PRODUCT LIABILITY, OR OTHERWISE ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. For information on commercial licenses, contact Rice University's Office of Technology Transfer at techtran@rice.edu or (713) 348-6173 Change History: Fixed the code such that 1D vectors passed to it can be in either passed as a row or column vector. Also took care of the code such that it will compile with both under standard C compilers as well as for ANSI C compilers Jan Erik Odegard <odegard@ece.rice.edu> Wed Jun 14 1995 %y = mdwt(x,h,L); % % function computes the discrete wavelet transform y for a 1D or 2D input % signal x. % % Input: % x : finite length 1D or 2D signal (implicitely periodized) % h : scaling filter % L : number of levels. in case of a 1D signal length(x) must be % divisible by 2^L; in case of a 2D signal the row and the % column dimension must be divisible by 2^L. % % see also: midwt, mrdwt, mirdwt */ #include <math.h> #include <stdio.h> #include <inttypes.h> #define max(A,B) (A > B ? A : B) #define mat(a, i, j) (*(a + (m*(j)+i))) /* macro for matrix indices */ #ifdef __STDC__ MDWT(double *x, uintptr_t m, uintptr_t n, double *h, uintptr_t lh, uintptr_t L, double *y) #else MDWT(x, m, n, h, lh, L, y) double *x, *h, *y; uintptr_t m, n, lh, L; #endif { double *h0, *h1, *ydummyl, *ydummyh, *xdummy; int *prob; uintptr_t i, j; uintptr_t actual_L, actual_m, actual_n, r_o_a, c_o_a, ir, ic, lhm1; xdummy = (double *)(uintptr_t)mxCalloc(max(m,n)+lh-1,sizeof(double)); ydummyl =(double *) (uintptr_t)mxCalloc(max(m,n),sizeof(double)); ydummyh = (double *)(uintptr_t)mxCalloc(max(m,n),sizeof(double)); h0 =(double *)(uintptr_t)mxCalloc(lh,sizeof(double)); h1 = (double *)(uintptr_t)mxCalloc(lh,sizeof(double)); /* analysis lowpass and highpass */ if (n==1){ n = m; m = 1; } for (i=0; i<lh; i++){ h0[i] = h[lh-i-1]; h1[i] =h[i]; } for (i=0; i<lh; i+=2) h1[i] = -h1[i]; lhm1 = lh - 1; actual_m = 2*m; actual_n = 2*n; /* main loop */ for (actual_L=1; actual_L <= L; actual_L++){ if (m==1) actual_m = 1; else{ actual_m = actual_m/2; r_o_a = actual_m/2; } actual_n = actual_n/2; c_o_a = actual_n/2; /* go by rows */ for (ir=0; ir<actual_m; ir++){ /* loop over rows */ /* store in dummy variable */ for (i=0; i<actual_n; i++) if (actual_L==1) xdummy[i] = mat(x, ir, i); else xdummy[i] = mat(y, ir, i); /* perform filtering lowpass and highpass*/ fpsconv(xdummy, actual_n, h0, h1, lhm1, ydummyl, ydummyh); /* restore dummy variables in matrices */ ic = c_o_a; for (i=0; i<c_o_a; i++){ mat(y, ir, i) = ydummyl[i]; mat(y, ir, ic++) = ydummyh[i]; } } /* go by columns in case of a 2D signal*/ if (m>1){ for (ic=0; ic<actual_n; ic++){ /* loop over column */ /* store in dummy variables */ for (i=0; i<actual_m; i++) xdummy[i] = mat(y, i, ic); /* perform filtering lowpass and highpass*/ fpsconv(xdummy, actual_m, h0, h1, lhm1, ydummyl, ydummyh); /* restore dummy variables in matrix */ ir = r_o_a; for (i=0; i<r_o_a; i++){ mat(y, i, ic) = ydummyl[i]; mat(y, ir++, ic) = ydummyh[i]; } } } } } #ifdef __STDC__ fpsconv(double *x_in, uintptr_t lx, double *h0, double *h1, uintptr_t lhm1, double *x_outl, double *x_outh) #else fpsconv(x_in, lx, h0, h1, lhm1, x_outl, x_outh) double *x_in, *h0, *h1, *x_outl, *x_outh; uintptr_t lx, lhm1; #endif { uintptr_t i, j, ind; double x0, x1; for (i=lx; i < lx+lhm1; i++) x_in[i] = *(x_in+(i-lx)); ind = 0; for (i=0; i<(lx); i+=2){ x0 = 0; x1 = 0; for (j=0; j<=lhm1; j++){ x0 = x0 + x_in[i+j]*h0[lhm1-j]; x1 = x1 + x_in[i+j]*h1[lhm1-j]; } x_outl[ind] = x0; x_outh[ind++] = x1; } }