Mercurial > hg > smallbox
view examples/Image Denoising/SMALL_ImgDenoise_DL_test_KSVDvsRLSDLA.m @ 78:f69ae88b8be5
added Rice Wavelet Toolbox with my modification, so it can be compiled on newer systems.
author | Ivan Damnjanovic lnx <ivan.damnjanovic@eecs.qmul.ac.uk> |
---|---|
date | Fri, 25 Mar 2011 15:27:33 +0000 |
parents | 55faa9b5d1ac |
children | 4302a91e6033 |
line wrap: on
line source
%% DICTIONARY LEARNING FOR IMAGE DENOISING % This file contains an example of how SMALLbox can be used to test different % dictionary learning techniques in Image Denoising problem. % It calls generateImageDenoiseProblem that will let you to choose image, % add noise and use noisy image to generate training set for dictionary % learning. % Three dictionary learning techniques were compared: % - KSVD - M. Elad, R. Rubinstein, and M. Zibulevsky, "Efficient % Implementation of the K-SVD Algorithm using Batch Orthogonal % Matching Pursuit", Technical Report - CS, Technion, April 2008. % - KSVDS - R. Rubinstein, M. Zibulevsky, and M. Elad, "Learning Sparse % Dictionaries for Sparse Signal Approximation", Technical % Report - CS, Technion, June 2009. % - SPAMS - J. Mairal, F. Bach, J. Ponce and G. Sapiro. Online % Dictionary Learning for Sparse Coding. International % Conference on Machine Learning,Montreal, Canada, 2009 % % % Ivan Damnjanovic 2010 %% % If you want to load the image outside of generateImageDenoiseProblem % function uncomment following lines. This can be useful if you want to % denoise more then one image for example. clear; TMPpath=pwd; FS=filesep; [pathstr1, name, ext, versn] = fileparts(which('SMALLboxSetup.m')); cd([pathstr1,FS,'data',FS,'images']); load('test_image.mat'); cd(TMPpath); % [filename,pathname] = uigetfile({'*.png;'},'Select a file containin pre-calculated notes'); % [pathstr, name, ext, versn] = fileparts(filename); % test_image = imread(filename); % test_image = double(test_image); % cd(TMPpath); % SMALL.Problem.name=name; noise_level=[10 20 25 50 100]; % Defining Image Denoising Problem as Dictionary Learning % Problem. As an input we set the number of training patches. for noise_ind=1:1 for im_num=2:2 SMALL.Problem = generateImageDenoiseProblem(test_image(im_num).i, 40000, '',256, noise_level(noise_ind)); SMALL.Problem.name=int2str(im_num); results(noise_ind,im_num).noisy_psnr=SMALL.Problem.noisy_psnr; %% % Use KSVD Dictionary Learning Algorithm to Learn overcomplete dictionary % Initialising Dictionary structure % Setting Dictionary structure fields (toolbox, name, param, D and time) % to zero values SMALL.DL(1)=SMALL_init_DL(); % Defining the parameters needed for dictionary learning SMALL.DL(1).toolbox = 'KSVD'; SMALL.DL(1).name = 'ksvd'; % Defining the parameters for KSVD % In this example we are learning 256 atoms in 20 iterations, so that % every patch in the training set can be represented with target error in % L2-norm (EData) % Type help ksvd in MATLAB prompt for more options. Edata=sqrt(prod(SMALL.Problem.blocksize)) * SMALL.Problem.sigma * SMALL.Problem.gain; maxatoms = floor(prod(SMALL.Problem.blocksize)/2); SMALL.DL(1).param=struct(... 'Edata', Edata,... 'initdict', SMALL.Problem.initdict,... 'dictsize', SMALL.Problem.p,... 'exact', 1, ... 'iternum', 20,... 'memusage', 'high'); % Learn the dictionary SMALL.DL(1) = SMALL_learn(SMALL.Problem, SMALL.DL(1)); % Set SMALL.Problem.A dictionary % (backward compatiblity with SPARCO: solver structure communicate % only with Problem structure, ie no direct communication between DL and % solver structures) SMALL.Problem.A = SMALL.DL(1).D; SMALL.Problem.reconstruct = @(x) ImgDenoise_reconstruct(x, SMALL.Problem); %% % Initialising solver structure % Setting solver structure fields (toolbox, name, param, solution, % reconstructed and time) to zero values SMALL.solver(1)=SMALL_init_solver; % Defining the parameters needed for image denoising SMALL.solver(1).toolbox='ompbox'; SMALL.solver(1).name='omp2'; SMALL.solver(1).param=struct(... 'epsilon',Edata,... 'maxatoms', maxatoms); % Denoising the image - SMALL_denoise function is similar to SMALL_solve, % but backward compatible with KSVD definition of denoising SMALL.solver(1)=SMALL_solve(SMALL.Problem, SMALL.solver(1)); SMALL.solver(1).reconstructed.psnr %% % Use KSVDS Dictionary Learning Algorithm to denoise image % Initialising solver structure % Setting solver structure fields (toolbox, name, param, solution, % reconstructed and time) to zero values % % SMALL.DL(2)=SMALL_init_DL(); % % % Defining the parameters needed for dictionary learning % % SMALL.DL(2).toolbox = 'KSVDS'; % SMALL.DL(2).name = 'ksvds'; % % % Defining the parameters for KSVDS % % In this example we are learning 256 atoms in 20 iterations, so that % % every patch in the training set can be represented with target error in % % L2-norm (EDataS). We also impose "double sparsity" - dictionary itself % % has to be sparse in the given base dictionary (Tdict - number of % % nonzero elements per atom). % % Type help ksvds in MATLAB prompt for more options. % % % SMALL.DL(2).param=struct(... % 'Edata', Edata, ... % 'Tdict', 6,... % 'stepsize', 1,... % 'dictsize', SMALL.Problem.p,... % 'iternum', 20,... % 'memusage', 'high'); % SMALL.DL(2).param.initA = speye(SMALL.Problem.p); % SMALL.DL(2).param.basedict{1} = odctdict(8,16); % SMALL.DL(2).param.basedict{2} = odctdict(8,16); % % % Learn the dictionary % % SMALL.DL(2) = SMALL_learn(SMALL.Problem, SMALL.DL(2)); % Set SMALL.Problem.A dictionary and SMALL.Problem.basedictionary % (backward compatiblity with SPARCO: solver structure communicate % only with Problem structure, ie no direct communication between DL and % solver structures) SMALL.Problem.A = SMALL.Problem.initdict; % SMALL.Problem.basedict{1} = SMALL.DL(2).param.basedict{1}; % SMALL.Problem.basedict{2} = SMALL.DL(2).param.basedict{2}; SMALL.DL(2).D=SMALL.Problem.initdict; SparseDict=0; SMALL.Problem.reconstruct = @(x) ImgDenoise_reconstruct(x, SMALL.Problem, SparseDict); %% % Initialising solver structure % Setting solver structure fields (toolbox, name, param, solution, % reconstructed and time) to zero values SMALL.solver(2)=SMALL_init_solver; % Defining the parameters needed for image denoising SMALL.solver(2).toolbox='ompbox'; SMALL.solver(2).name='omp2'; SMALL.solver(2).param=struct(... 'epsilon',Edata,... 'maxatoms', maxatoms); % Denoising the image - SMALL_denoise function is similar to SMALL_solve, % but backward compatible with KSVD definition of denoising % Pay attention that since implicit base dictionary is used, denoising % can be much faster then using explicit dictionary in KSVD example. SMALL.solver(2)=SMALL_solve(SMALL.Problem, SMALL.solver(2)); %% for i =1:1 X=SMALL.Problem.b1; X_norm=sqrt(sum(X.^2, 1)); [X_norm_sort, p]=sort(X_norm); p1=p(X_norm_sort>Edata); if size(p1,2)>140000 p2 = randperm(size(p1,2)); p2=sort(p2(1:40000)); size(p2,2) SMALL.Problem.b=X(:,p1(p2)); else size(p1,2) SMALL.Problem.b=X(:,p1); end lambda=0.9998 % Use Recursive Least Squares % to Learn overcomplete dictionary % Initialising Dictionary structure % Setting Dictionary structure fields (toolbox, name, param, D and time) % to zero values SMALL.DL(3)=SMALL_init_DL(); % Defining fields needed for dictionary learning SMALL.DL(3).toolbox = 'SMALL'; SMALL.DL(3).name = 'SMALL_rlsdla'; SMALL.DL(3).param=struct(... 'Edata', Edata,... 'initdict', SMALL.Problem.initdict,... 'dictsize', SMALL.Problem.p,... 'forgettingMode', 'FIX',... 'forgettingFactor', lambda); % % Type 'help mexTrainDL in MATLAB prompt for explanation of parameters. % % SMALL.DL(3).param=struct(... % 'D', SMALL.Problem.initdict,... % 'K', SMALL.Problem.p,... % 'lambda', 2,... % 'iter', 200,... % 'mode', 3, ... % 'modeD', 0); % Learn the dictionary SMALL.DL(3) = SMALL_learn(SMALL.Problem, SMALL.DL(3)); %SMALL.DL(3).D(:,1)=SMALL.DL(1).D(:,1); % % % Set SMALL.Problem.A dictionary % % (backward compatiblity with SPARCO: solver structure communicate % % only with Problem structure, ie no direct communication between DL and % % solver structures) % % % % %% % % Initialising solver structure % % Setting solver structure fields (toolbox, name, param, solution, % % reconstructed and time) to zero values % SMALL.Problem.A = SMALL.DL(1).D; % SMALL.Problem.reconstruct = @(x) ImgDenoise_reconstruct(x, SMALL.Problem); % maxatoms=5; % SMALL.solver(3)=SMALL_init_solver; % % % Defining the parameters needed for denoising % % % SMALL.solver(3).toolbox='SPAMS'; % % SMALL.solver(3).name='mexLasso'; % % SMALL.solver(3).param=struct(... % % 'mode', 1, ... % % 'lambda',Edata*Edata,... % % 'L', maxatoms); % % % Denoising the image - SMALL_denoise function is similar to SMALL_solve, % % % but backward compatible with KSVD definition of denoising % % % % SMALL.solver(3)=SMALL_solve(SMALL.Problem, SMALL.solver(3)); % SMALL.solver(3).toolbox='SMALL'; % SMALL.solver(3).name='SMALL_cgp'; % SMALL.solver(3).param=sprintf('%d, %.2f', maxatoms, sqrt(Edata)); % % Denoising the image - SMALL_denoise function is similar to SMALL_solve, % % but backward compatible with KSVD definition of denoising % % SMALL.solver(3)=SMALL_solve(SMALL.Problem, SMALL.solver(3)); % %% % % Use RLS-DLA % % % Initialising Dictionary structure % % Setting Dictionary structure fields (toolbox, name, param, D and time) % % to zero values % % SMALL.DL(3)=SMALL_init_DL(); % % % Defining fields needed for dictionary learning % % SMALL.DL(3).toolbox = 'mpv2'; % SMALL.DL(3).name = 'rlsdla'; % % % Type 'help mexTrainDL in MATLAB prompt for explanation of parameters. % % SMALL.DL(3).param=struct(... % 'D', SMALL.Problem.initdict,... % 'K', SMALL.Problem.p,... % 'abs', Edata*Edata,... % 'lambda', 0.995,... % 'iternum',1); % % % Learn the dictionary % % SMALL.DL(3) = SMALL_learn(SMALL.Problem, SMALL.DL(3)); % % % Set SMALL.Problem.A dictionary % % (backward compatiblity with SPARCO: solver structure communicate % % only with Problem structure, ie no direct communication between DL and % % solver structures) % % %% % Initialising solver structure % Setting solver structure fields (toolbox, name, param, solution, % reconstructed and time) to zero values %SMALL.DL(3).D(:,225:256)=0; SMALL.Problem.A = SMALL.DL(3).D; SMALL.Problem.reconstruct = @(x) ImgDenoise_reconstruct(x, SMALL.Problem); %maxatoms=32; SMALL.solver(3)=SMALL_init_solver; % Defining the parameters needed for denoising % SMALL.solver(3).toolbox='SPAMS'; % SMALL.solver(3).name='mexLasso'; % SMALL.solver(3).param=struct(... % 'mode', 1, ... % 'lambda',Edata*Edata,... % 'L', maxatoms); % % Denoising the image - SMALL_denoise function is similar to SMALL_solve, % % but backward compatible with KSVD definition of denoising % % SMALL.solver(3)=SMALL_solve(SMALL.Problem, SMALL.solver(3)); % Initialising solver structure % Setting solver structure fields (toolbox, name, param, solution, % reconstructed and time) to zero values SMALL.solver(3)=SMALL_init_solver; % Defining the parameters needed for image denoising SMALL.solver(3).toolbox='ompbox'; SMALL.solver(3).name='omp2'; SMALL.solver(3).param=struct(... 'epsilon',Edata,... 'maxatoms', maxatoms); % SMALL.solver(3).toolbox='SPAMS'; % SMALL.solver(3).name='mexLasso'; % SMALL.solver(3).param=struct(... % 'mode', 2, ... % 'lambda',40,... % 'L', maxatoms); % Denoising the image - SMALL_denoise function is similar to SMALL_solve, % but backward compatible with KSVD definition of denoising SMALL.solver(3)=SMALL_solve(SMALL.Problem, SMALL.solver(3)); % Plot results and save midi files SMALL.solver(3).reconstructed.psnr % show results % SMALL_ImgDeNoiseResult(SMALL); end results(noise_ind,im_num).psnr.ksvd=SMALL.solver(1).reconstructed.psnr; results(noise_ind,im_num).psnr.odct=SMALL.solver(2).reconstructed.psnr; results(noise_ind,im_num).psnr.rlsdla=SMALL.solver(3).reconstructed.psnr; results(noise_ind,im_num).vmrse.ksvd=SMALL.solver(1).reconstructed.vmrse; results(noise_ind,im_num).vmrse.odct=SMALL.solver(2).reconstructed.vmrse; results(noise_ind,im_num).vmrse.rlsdla=SMALL.solver(3).reconstructed.vmrse; results(noise_ind,im_num).ssim.ksvd=SMALL.solver(1).reconstructed.ssim; results(noise_ind,im_num).ssim.odct=SMALL.solver(2).reconstructed.ssim; results(noise_ind,im_num).ssim.rlsdla=SMALL.solver(3).reconstructed.ssim; results(noise_ind,im_num).time.ksvd=SMALL.solver(1).time+SMALL.DL(1).time; results(noise_ind,im_num).time.rlsdla.time=SMALL.solver(3).time+SMALL.DL(3).time; %clear SMALL; end end save results.mat results