view toolboxes/AudioInpaintingToolbox/Experiments/DeclippingExperiment/declippingExperiment.m @ 210:f12a476a4977 luisf_dev

Added help comments to SMALL_two_step_DL.m
author bmailhe
date Wed, 21 Mar 2012 17:25:40 +0000
parents 56d719a5fd31
children
line wrap: on
line source
function declippingExperiment(expParam)
% Declip several sounds with different clipping levels, using several
% solvers.
%
% Usage: declippingExperiment(expParam)
%
%
% Inputs:
%          - expParam is an optional structure where the user can define
%          the experiment parameters.
%          - expParam.clippingScale: clipping values to test, as a vector
%           of real numbers in ]0,1[.
%          - expParam.soundDir: path to sound directory. All the .wav files
%          in this directory will be tested.
%          - expParam.destDir: path to store the results.
%          - expParam.solvers: list of solvers with their parameters
%
%
% -------------------
%
% Audio Inpainting toolbox
% Date: June 28, 2011
% By Valentin Emiya, Amir Adler, Maria Jafari
% This code is distributed under the terms of the GNU Public License version 3 (http://www.gnu.org/licenses/gpl.txt).

if ~isdeployed
    addpath('../../Problems/');
    addpath('../../Solvers/');
    addpath('../../Utils/');
    addpath('../../Utils/dictionaries/');
    addpath('../../Utils/evaluation/');
%     addpath('../../Utils/TCPIP_SocketCom/');
%     javaaddpath('../../Utils/TCPIP_SocketCom');
    dbstop if error
    close all
end

if nargin<1
    expParam = [];
end
if ~isfield(expParam,'clippingScale'),
    expParam.clippingScale = 0.4:0.2:0.8;
end
if ~isfield(expParam,'soundDir'),
    expParam.soundDir = '../../Data/testSpeech8kHz_from16kHz/';
    expParam.soundDir = '../../Data/shortTest/';
    warning('AITB:soundDir','soundDir has only one sound to have faster computations. Recommended soundDir: ../../Data/testSpeech8kHz_from16kHz/');
end
if ~isfield(expParam,'destDir'),
    expParam.destDir = '../../tmp/declip/';
end

%% Set parameters

if ~isfield(expParam,'solvers'),
    % Choose the solver methods you would like to test: OMP, L1, Janssen
    warning('AITB:N','Frame length=256 is used to have faster computations. Recommended frame length is 512 at 8kHz.');
    warning('AITB:overlap','Overlap factor=2 is used to have faster computations. Recommended value: 4.');
    nSolver = 0;
    
    nSolver = nSolver+1;
    expParam.solvers(nSolver).name = 'OMP-C';
    expParam.solvers(nSolver).function = @inpaintSignal_IndependentProcessingOfFrames;
    expParam.solvers(nSolver).param.N = 512; % frame length
    expParam.solvers(nSolver).param.N = 256; % frame length
    expParam.solvers(nSolver).param.inpaintFrame = @inpaintFrame_OMP; % solver function
    expParam.solvers(nSolver).param.OMPerr = 0.001;
    expParam.solvers(nSolver).param.sparsityDegree = expParam.solvers(nSolver).param.N/4;
    expParam.solvers(nSolver).param.D_fun = @DCT_Dictionary; % Dictionary (function handle)
    expParam.solvers(nSolver).param.OLA_frameOverlapFactor = 4;
    expParam.solvers(nSolver).param.OLA_frameOverlapFactor = 2;
    expParam.solvers(nSolver).param.redundancyFactor = 2; % Dictionary redundancy
    expParam.solvers(nSolver).param.wd = @wRect; % Weighting window for dictionary atoms
    expParam.solvers(nSolver).param.wa = @wRect; % Analysis window
    expParam.solvers(nSolver).param.OLA_ws = @wSine; % Synthesis window
    expParam.solvers(nSolver).param.SKIP_CLEAN_FRAMES = true; % do not process frames where there is no missing samples
    expParam.solvers(nSolver).param.MULTITHREAD_FRAME_PROCESSING = false; % not implemented yet
    
    nSolver = nSolver+1;
    expParam.solvers(nSolver).name = 'consOMP-C';
    expParam.solvers(nSolver).function = @inpaintSignal_IndependentProcessingOfFrames;
    expParam.solvers(nSolver).param.N = 512; % frame length
    expParam.solvers(nSolver).param.N = 256; % frame length
    expParam.solvers(nSolver).param.inpaintFrame = @inpaintFrame_consOMP; % solver function
    expParam.solvers(nSolver).param.OMPerr = 0.001;
    expParam.solvers(nSolver).param.sparsityDegree = expParam.solvers(nSolver).param.N/4;
    expParam.solvers(nSolver).param.D_fun = @DCT_Dictionary; % Dictionary (function handle)
    expParam.solvers(nSolver).param.OLA_frameOverlapFactor = 4;
    expParam.solvers(nSolver).param.OLA_frameOverlapFactor = 2;
    expParam.solvers(nSolver).param.redundancyFactor = 2; % Dictionary redundancy
    expParam.solvers(nSolver).param.wd = @wRect; % Weighting window for dictionary atoms
    expParam.solvers(nSolver).param.wa = @wRect; % Analysis window
    expParam.solvers(nSolver).param.OLA_ws = @wSine; % Synthesis window
    expParam.solvers(nSolver).param.SKIP_CLEAN_FRAMES = true; % do not process frames where there is no missing samples
    expParam.solvers(nSolver).param.MULTITHREAD_FRAME_PROCESSING = false; % not implemented yet
    
    nSolver = nSolver+1;
    expParam.solvers(nSolver).name = 'OMP-G';
    expParam.solvers(nSolver).function = @inpaintSignal_IndependentProcessingOfFrames;
    expParam.solvers(nSolver).param.N = 512; % frame length
    expParam.solvers(nSolver).param.N = 256; % frame length
    expParam.solvers(nSolver).param.inpaintFrame = @inpaintFrame_OMP_Gabor; % solver function
    expParam.solvers(nSolver).param.OMPerr = 0.001;
    expParam.solvers(nSolver).param.sparsityDegree = expParam.solvers(nSolver).param.N/4;
    expParam.solvers(nSolver).param.D_fun = @Gabor_Dictionary; % Dictionary (function handle)
    expParam.solvers(nSolver).param.OLA_frameOverlapFactor = 4;
    expParam.solvers(nSolver).param.OLA_frameOverlapFactor = 2;
    expParam.solvers(nSolver).param.redundancyFactor = 2; % Dictionary redundancy
    expParam.solvers(nSolver).param.wd = @wRect; % Weighting window for dictionary atoms
    expParam.solvers(nSolver).param.wa = @wRect; % Analysis window
    expParam.solvers(nSolver).param.OLA_ws = @wSine; % Synthesis window
    expParam.solvers(nSolver).param.SKIP_CLEAN_FRAMES = true; % do not process frames where there is no missing samples
    expParam.solvers(nSolver).param.MULTITHREAD_FRAME_PROCESSING = false; % not implemented yet
    
    nSolver = nSolver+1;
    expParam.solvers(nSolver).name = 'consOMP-G';
    expParam.solvers(nSolver).function = @inpaintSignal_IndependentProcessingOfFrames;
    expParam.solvers(nSolver).param.N = 512; % frame length
    expParam.solvers(nSolver).param.N = 256; % frame length
    expParam.solvers(nSolver).param.inpaintFrame = @inpaintFrame_consOMP_Gabor; % solver function
    expParam.solvers(nSolver).param.OMPerr = 0.001;
    expParam.solvers(nSolver).param.sparsityDegree = expParam.solvers(nSolver).param.N/4;
    expParam.solvers(nSolver).param.D_fun = @Gabor_Dictionary; % Dictionary (function handle)
    expParam.solvers(nSolver).param.OLA_frameOverlapFactor = 4;
    expParam.solvers(nSolver).param.OLA_frameOverlapFactor = 2
    expParam.solvers(nSolver).param.redundancyFactor = 2; % Dictionary redundancy
    expParam.solvers(nSolver).param.wd = @wRect; % Weighting window for dictionary atoms
    expParam.solvers(nSolver).param.wa = @wRect; % Analysis window
    expParam.solvers(nSolver).param.OLA_ws = @wSine; % Synthesis window
    expParam.solvers(nSolver).param.SKIP_CLEAN_FRAMES = true; % do not process frames where there is no missing samples
    expParam.solvers(nSolver).param.MULTITHREAD_FRAME_PROCESSING = false; % not implemented yet
    
    nSolver = nSolver+1;
    expParam.solvers(nSolver).name = 'Janssen';
    expParam.solvers(nSolver).function = @inpaintSignal_IndependentProcessingOfFrames;
    expParam.solvers(nSolver).param.inpaintFrame = @inpaintFrame_janssenInterpolation; % solver function
    expParam.solvers(nSolver).param.N = 512; % frame length
    expParam.solvers(nSolver).param.N = 256;
    expParam.solvers(nSolver).param.OLA_frameOverlapFactor = 4;
    expParam.solvers(nSolver).param.OLA_frameOverlapFactor = 2
    expParam.solvers(nSolver).param.wa = @wRect; % Analysis window
    expParam.solvers(nSolver).param.OLA_ws = @wSine; % Synthesis window
    expParam.solvers(nSolver).param.SKIP_CLEAN_FRAMES = true; % do not process frames where there is no missing samples
    expParam.solvers(nSolver).param.MULTITHREAD_FRAME_PROCESSING = false; % not implemented yet
end

SNRClip = zeros(0,0,0);
fprintf('Folder %s\n',expParam.soundDir);
if ~exist(expParam.destDir,'dir')
    mkdir(expParam.destDir)
end
soundFiles = dir([expParam.soundDir '*.wav']);

for kf = 1:length(soundFiles)
    soundfile = [expParam.soundDir soundFiles(kf).name];
    fprintf(' File %s\n',soundfile);
    %% Read test signal
    [x fs] = wavread(soundfile);
    
    for kClip = 1:length(expParam.clippingScale)
        clippingLevel = expParam.clippingScale(kClip);
        fprintf('  Clip level %g\n',clippingLevel);
        
        %% Generate the problem
        [problemData, solutionData] = generateDeclippingProblem(x,clippingLevel);
        
        for nSolver = 1:length(expParam.solvers)
            %% Declip with solver
            solverParam = expParam.solvers(nSolver).param;
            [xEst1 xEst2] = expParam.solvers(nSolver).function(problemData,solverParam);
            
            %% compute performance
            L = length(xEst1);
            N = solverParam.N;
            [SNRAll, SNRmiss] = ...
                SNRInpaintingPerformance(...
                solutionData.xClean(N:L-N),...
                problemData.x(N:L-N),...
                xEst2(N:L-N),...
                problemData.IMiss(N:L-N));
            SNRClip(kf,kClip,nSolver) = SNRmiss(2);
            
            % normalize and save both the reference and the estimates!
            normX = 1.1*max(abs([xEst1(:);xEst2(:);solutionData.xClean(:)]));
            
            L = min([length(xEst2),length(xEst1),length(solutionData.xClean),length(problemData.x)]);
            xEst1 = xEst1(1:L)/normX;
            xEst2 = xEst2(1:L)/normX;
            xClipped = problemData.x(1:L)/normX;
            xClean = solutionData.xClean(1:L)/normX;
            wavwrite(xEst1,fs,sprintf('%s%s%s%g.wav',expParam.destDir,soundFiles(kf).name(1:end-4),'Est1',clippingLevel));
            wavwrite(xEst2,fs,sprintf('%s%s%s%g.wav',expParam.destDir,soundFiles(kf).name(1:end-4),'Est2',clippingLevel));
            wavwrite(xClipped,fs,sprintf('%s%s%s%g.wav',expParam.destDir,soundFiles(kf).name(1:end-4),'Clipped',clippingLevel));
            wavwrite(xClean,fs,sprintf('%s%s%s%g.wav',expParam.destDir,soundFiles(kf).name(1:end-4),'Ref',clippingLevel));
            
            fprintf('\n');
            clear a xEst1 xEst2 xClipped xClean IClipped
            save([expParam.destDir 'clippingExp.mat']);
        end
    end
end

%% Plot results
averageSNR = squeeze(mean(SNRClip,1));
disp(averageSNR)
figure,
plot(averageSNR)
legend(arrayfun(@(x)x.name,expParam.solvers,'UniformOutput',false));
xlabel('Clipping level')
ylabel('SNR')
return