Mercurial > hg > smallbox
view examples/Image Denoising/SMALL_ImgDenoise_DL_test_KSVDvsSPAMS.m @ 17:ec86452113ed
(none)
author | idamnjanovic |
---|---|
date | Fri, 26 Mar 2010 11:33:56 +0000 |
parents | cd55209c69e1 |
children | cbf3521c25eb |
line wrap: on
line source
%% DICTIONARY LEARNING FOR IMAGE DENOISING % This file contains an example of how SMALLbox can be used to test different % dictionary learning techniques in Image Denoising problem. % It calls generateImageDenoiseProblem that will let you to choose image, % add noise and use noisy image to generate training set for dictionary % learning. % Three dictionary learning techniques were compared: % - KSVD - M. Elad, R. Rubinstein, and M. Zibulevsky, "Efficient % Implementation of the K-SVD Algorithm using Batch Orthogonal % Matching Pursuit", Technical Report - CS, Technion, April 2008. % - KSVDS - R. Rubinstein, M. Zibulevsky, and M. Elad, "Learning Sparse % Dictionaries for Sparse Signal Approximation", Technical % Report - CS, Technion, June 2009. % - SPAMS - J. Mairal, F. Bach, J. Ponce and G. Sapiro. Online % Dictionary Learning for Sparse Coding. International % Conference on Machine Learning,Montreal, Canada, 2009 % % % Ivan Damnjanovic 2010 %% clear; % If you want to load the image outside of generateImageDenoiseProblem % function uncomment following lines. This can be useful if you want to % denoise more then one image for example. % TMPpath=pwd; % FS=filesep; % [pathstr1, name, ext, versn] = fileparts(which('SMALLboxSetup.m')); % cd([pathstr1,FS,'data',FS,'images']); % [filename,pathname] = uigetfile({'*.png;'},'Select a file containin pre-calculated notes'); % [pathstr, name, ext, versn] = fileparts(filename); % test_image = imread(filename); % test_image = double(test_image); % cd(TMPpath); % SMALL.Problem.name=name; % Defining Image Denoising Problem as Dictionary Learning % Problem. As an input we set the number of training patches. SMALL.Problem = generateImageDenoiseProblem('', 40000); %% % Use KSVD Dictionary Learning Algorithm to Learn overcomplete dictionary % Initialising Dictionary structure % Setting Dictionary structure fields (toolbox, name, param, D and time) % to zero values SMALL.DL(1)=SMALL_init_DL(); % Defining the parameters needed for dictionary learning SMALL.DL(1).toolbox = 'KSVD'; SMALL.DL(1).name = 'ksvd'; % Defining the parameters for KSVD % In this example we are learning 256 atoms in 20 iterations, so that % every patch in the training set can be represented with target error in % L2-norm (EData) % Type help ksvd in MATLAB prompt for more options. Edata=sqrt(prod(SMALL.Problem.blocksize)) * SMALL.Problem.sigma * SMALL.Problem.gain; SMALL.DL(1).param=struct(... 'Edata', Edata,... 'initdict', SMALL.Problem.initdict,... 'dictsize', SMALL.Problem.p,... 'iternum', 20,... 'memusage', 'high'); % Learn the dictionary SMALL.DL(1) = SMALL_learn(SMALL.Problem, SMALL.DL(1)); % Set SMALL.Problem.A dictionary % (backward compatiblity with SPARCO: solver structure communicate % only with Problem structure, ie no direct communication between DL and % solver structures) SMALL.Problem.A = SMALL.DL(1).D; %% % Initialising solver structure % Setting solver structure fields (toolbox, name, param, solution, % reconstructed and time) to zero values SMALL.solver(1)=SMALL_init_solver; % Defining the parameters needed for image denoising SMALL.solver(1).toolbox='ompbox'; SMALL.solver(1).name='ompdenoise'; % Denoising the image - SMALL_denoise function is similar to SMALL_solve, % but backward compatible with KSVD definition of denoising SMALL.solver(1)=SMALL_denoise(SMALL.Problem, SMALL.solver(1)); %% % Use KSVDS Dictionary Learning Algorithm to denoise image % Initialising solver structure % Setting solver structure fields (toolbox, name, param, solution, % reconstructed and time) to zero values SMALL.DL(2)=SMALL_init_DL(); % Defining the parameters needed for dictionary learning SMALL.DL(2).toolbox = 'KSVDS'; SMALL.DL(2).name = 'ksvds'; % Defining the parameters for KSVDS % In this example we are learning 256 atoms in 20 iterations, so that % every patch in the training set can be represented with target error in % L2-norm (EDataS). We also impose "double sparsity" - dictionary itself % has to be sparse in the given base dictionary (Tdict - number of % nonzero elements per atom). % Type help ksvds in MATLAB prompt for more options. EdataS=sqrt(prod(SMALL.Problem.blocksize)) * SMALL.Problem.sigma * SMALL.Problem.gain; SMALL.DL(2).param=struct(... 'Edata', EdataS, ... 'Tdict', 6,... 'stepsize', 1,... 'dictsize', SMALL.Problem.p,... 'iternum', 20,... 'memusage', 'high'); SMALL.DL(2).param.initA = speye(SMALL.Problem.p); SMALL.DL(2).param.basedict{1} = odctdict(8,16); SMALL.DL(2).param.basedict{2} = odctdict(8,16); % Learn the dictionary SMALL.DL(2) = SMALL_learn(SMALL.Problem, SMALL.DL(2)); % Set SMALL.Problem.A dictionary and SMALL.Problem.basedictionary % (backward compatiblity with SPARCO: solver structure communicate % only with Problem structure, ie no direct communication between DL and % solver structures) SMALL.Problem.A = SMALL.DL(2).D; SMALL.Problem.basedict{1} = SMALL.DL(2).param.basedict{1}; SMALL.Problem.basedict{2} = SMALL.DL(2).param.basedict{2}; %% % Initialising solver structure % Setting solver structure fields (toolbox, name, param, solution, % reconstructed and time) to zero values SMALL.solver(2)=SMALL_init_solver; % Defining the parameters needed for image denoising SMALL.solver(2).toolbox='ompsbox'; SMALL.solver(2).name='ompsdenoise'; % Denoising the image - SMALL_denoise function is similar to SMALL_solve, % but backward compatible with KSVD definition of denoising % Pay attention that since implicit base dictionary is used, denoising % can be much faster then using explicit dictionary in KSVD example. SMALL.solver(2)=SMALL_denoise(SMALL.Problem, SMALL.solver(2)); % %% % % Use SPAMS Online Dictionary Learning Algorithm % % to Learn overcomplete dictionary (Julien Mairal 2009) % % (If you have not installed SPAMS please comment the following two cells) % % % Initialising Dictionary structure % % Setting Dictionary structure fields (toolbox, name, param, D and time) % % to zero values % % SMALL.DL(3)=SMALL_init_DL(); % % % Defining fields needed for dictionary learning % % SMALL.DL(3).toolbox = 'SPAMS'; % SMALL.DL(3).name = 'mexTrainDL'; % % % Type 'help mexTrainDL in MATLAB prompt for explanation of parameters. % % SMALL.DL(3).param=struct(... % 'D', SMALL.Problem.initdict,... % 'K', SMALL.Problem.p,... % 'lambda', 2,... % 'iter', 200,... % 'mode', 3, ... % 'modeD', 0); % % % Learn the dictionary % % SMALL.DL(3) = SMALL_learn(SMALL.Problem, SMALL.DL(3)); % % % Set SMALL.Problem.A dictionary % % (backward compatiblity with SPARCO: solver structure communicate % % only with Problem structure, ie no direct communication between DL and % % solver structures) % % SMALL.Problem.A = SMALL.DL(3).D; % % % %% % % Initialising solver structure % % Setting solver structure fields (toolbox, name, param, solution, % % reconstructed and time) to zero values % % SMALL.solver(3)=SMALL_init_solver; % % % Defining the parameters needed for denoising % % SMALL.solver(3).toolbox='ompbox'; % SMALL.solver(3).name='ompdenoise'; % % % Denoising the image - SMALL_denoise function is similar to SMALL_solve, % % but backward compatible with KSVD definition of denoising % % SMALL.solver(3)=SMALL_denoise(SMALL.Problem, SMALL.solver(3)); %% % Plot results and save midi files % show results % SMALL_ImgDeNoiseResult(SMALL);