Mercurial > hg > smallbox
view util/classes/@dictionary/dictionary.m @ 171:e8428989412f danieleb
Added dictionary decorrelation functions and test script for Letters paper.
author | Daniele Barchiesi <daniele.barchiesi@eecs.qmul.ac.uk> |
---|---|
date | Thu, 06 Oct 2011 14:33:52 +0100 |
parents | e3035d45d014 |
children | 8fc38e8df8c6 |
line wrap: on
line source
classdef dictionary %% Dictionary for sparse representation properties phi %Matrix containing the dictionary len %Length of basis functions nAtoms %Number of basis function name %String containing the matrix ensemble from which the dictionary is drawn end properties (Dependent = true) redundancy %Redundancy of the dictionary: nAtoms/len coherence %Maximum inner product of different basis isNormalised %True if the atoms have unit norm rank %rank of the dictionary end methods %% Constructor function obj = dictionary(phi,len,nAtoms) % obj = dictionary(phi,len,nAtoms) % INPUTS: % - phi: either a string specifying a matrix ensamble or a % matrix defining an explicit dictionary % - len: length of the atoms (only for implicit dictionaries) % - nAtoms: number of atoms (only for implicit dictionaries) if nargin if ~ischar(phi) [obj.len obj.nAtoms] = size(phi); obj.phi = phi; obj.name = 'explicit'; else switch lower(phi) case 'dct' obj.phi = dctmatrix(len,nAtoms); case 'grassmanian' obj.phi = grassmanian(len,nAtoms); otherwise obj.phi = MatrixEnsemble(len,nAtoms,phi); end obj.len = len; obj.nAtoms = nAtoms; obj.name = lower(phi); end end end %% Dependent properties function redundancy = get.redundancy(obj) redundancy = obj.nAtoms/obj.len; end function coherence = get.coherence(obj) obj.phi = normcol(obj.phi); G = obj.phi'*obj.phi; G = G - eye(size(G)); coherence = max(abs(G(:))); end function isNormalised = get.isNormalised(obj) isNormalised = norm(sum(conj(obj.phi).*obj.phi) - ... ones(1,obj.nAtoms))<1e-9; end function r = get.rank(obj) r = rank(obj.phi); end %% Operations function obj = normalize(obj) obj.phi = normcol(obj.phi); end %% Visualization function image(obj) %Image of the dictionary if isreal(obj.phi) imagesc(obj.phi); title('Dictionary'); xlabel('Atom number'); else subplot(2,1,1) imagesc(real(obj.phi)); title('Real'); xlabel('Atom number'); subplot(2,1,2) imagesc(imag(obj.phi)); title('Imaginary'); xlabel('Atom number'); end end function imagegram(obj) G = obj.phi'*obj.phi; imagesc(G); title('Gram Matrix') end function plot(obj,n) %Plot of the n-th basis if isreal(obj.phi) plot(obj.phi(:,n)); title(['Atom number ' num2str(n) '/' num2str(size(obj.phi,2))]); else subplot(2,1,1) plot(real(obj.phi(:,n))); title(['Atom number ' num2str(n) '/' num2str(size(obj.phi,2)) ' - Real']); subplot(2,1,2) plot(imag(obj.phi(:,n))); title(['Atom number ' num2str(n) '/' num2str(size(obj.phi,2)) ' - Imaginary']); end end function movie(obj) %Movie of the basis for i=1:size(obj.phi,2) obj.plot(i); pause(1/25); end end end end