Mercurial > hg > smallbox
view toolboxes/alps/ALPS/cgsolve.m @ 195:d50f5bdbe14c luisf_dev
- Added SMALL_DL_test: simple DL showcase
- Added dico_decorr_symmetric: improved version of INK-SVD decorrelation step
- Debugged SMALL_learn, SMALLBoxInit and SMALL_two_step_DL
author | Daniele Barchiesi <daniele.barchiesi@eecs.qmul.ac.uk> |
---|---|
date | Wed, 14 Mar 2012 14:42:52 +0000 |
parents | 0de08f68256b |
children |
line wrap: on
line source
% cgsolve.m % % Solve a symmetric positive definite system Ax = b via conjugate gradients. % % Usage: [x, res, iter] = cgsolve(A, b, tol, maxiter, verbose) % % A - Either an NxN matrix, or a function handle. % % b - N vector % % tol - Desired precision. Algorithm terminates when % norm(Ax-b)/norm(b) < tol . % % maxiter - Maximum number of iterations. % % verbose - If 0, do not print out progress messages. % Default = 1. % % Written by: Justin Romberg, Caltech % Email: jrom@acm.caltech.edu % Created: October 2005 % function [x, res, iter] = cgsolve(A, b, tol, maxiter, verbose) if (nargin < 5), verbose = 1; end implicit = isa(A,'function_handle'); x = zeros(length(b),1); r = b; d = r; delta = r'*r; delta0 = b'*b; numiter = 0; bestx = x; bestres = sqrt(delta/delta0); while ((numiter < maxiter) & (delta > tol^2*delta0)) % q = A*d if (implicit), q = A(d); else, q = A*d; end alpha = delta/(d'*q); x = x + alpha*d; if (mod(numiter+1,50) == 0) % r = b - Aux*x if (implicit), r = b - A(x); else, r = b - A*x; end else r = r - alpha*q; end deltaold = delta; delta = r'*r; beta = delta/deltaold; d = r + beta*d; numiter = numiter + 1; if (sqrt(delta/delta0) < bestres) bestx = x; bestres = sqrt(delta/delta0); end if ((verbose) & (mod(numiter,50)==0)) disp(sprintf('cg: Iter = %d, Best residual = %8.3e, Current residual = %8.3e', ... numiter, bestres, sqrt(delta/delta0))); end end if (verbose) disp(sprintf('cg: Iterations = %d, best residual = %14.8e', numiter, bestres)); end x = bestx; res = bestres; iter = numiter;