Mercurial > hg > smallbox
view DL/Majorization Minimization DL/ExactDicoRecovery/ksvd_cn.m @ 195:d50f5bdbe14c luisf_dev
- Added SMALL_DL_test: simple DL showcase
- Added dico_decorr_symmetric: improved version of INK-SVD decorrelation step
- Debugged SMALL_learn, SMALLBoxInit and SMALL_two_step_DL
author | Daniele Barchiesi <daniele.barchiesi@eecs.qmul.ac.uk> |
---|---|
date | Wed, 14 Mar 2012 14:42:52 +0000 |
parents | b14209313ba4 |
children |
line wrap: on
line source
% K-SVD algorithm for Dictionary Learning % Y = input data (M X L matrix) % Phi = initial dictionary (M X N), e.g. random dictionary or first N data samples % lambda = regularization coefficient (||Phi*X-Y||_F)^2 + lambda*||X||_1 % IT = number of iterations function [Phiout,X,ert] = ksvd_cn(Y,Phi,lambda,IT) maxIT = 1000; [PhiN,PhiM] = size(Phi); RR1 = PhiM; %%%%%%%%%%%%%% % [PhiM,L] = size(ud); [PhiN,L] = size(Y); X = ones(PhiM,L); for it = 1:IT to = .1+svds(Phi,1); [PhiN,PhiM] = size(Phi); %%%% eps = 3*10^-4; map = 1; % Projecting on the selected space (0=no,1=yes) [X,l1err] = mm1(Phi,Y,X,to,lambda,maxIT,eps,map); %% Sparse approximation with Iterative Soft-thresholding ert(it) = l1err; %%% [Phi,X] = dict_update_KSVD_cn(Phi,Y,X); end Phiout = Phi;