Mercurial > hg > smallbox
view DL/two-step DL/dico_decorr_symetric.m @ 234:c96880c0c47c
renamed file.
author | luisf <luis.figueira@eecs.qmul.ac.uk> |
---|---|
date | Thu, 19 Apr 2012 17:21:05 +0100 |
parents | 69ce11724b1f |
children | fd0b5d36f6ad |
line wrap: on
line source
function dico = dico_decorr_symetric(dico, mu) %DICO_DECORR decorrelate a dictionary % Parameters: % dico: the dictionary, either a matrix or a cell array of matrices. % mu: the coherence threshold % % Result: % dico: if the input dico was a matrix, then a matrix close to the % input one with coherence mu. % If the input was a cell array, a cell array of the same size % containing matrices such that the coherence between different cells % is lower than mu. eps = 1e-3; % define tolerance for normalisation term alpha % convert mu to the to the mean direction theta = acos(mu)/2; ctheta = cos(theta); stheta = sin(theta); % compute atom weights % if nargin > 2 % rank = sum(amp.*amp, 2); % else % rank = randperm(length(dico)); % end % if only one dictionary is provided, then decorrelate it if ~iscell(dico) % several decorrelation iterations might be needed to reach global % coherence mu. niter can be adjusted to needs. niter = 1; while max(max(abs(dico'*dico -eye(length(dico))))) > mu + eps % find pairs of high correlation atoms colors = dico_color(dico, mu); % iterate on all pairs nbColors = max(colors); for c = 1:nbColors index = find(colors==c); if numel(index) == 2 if dico(:,index(1))'*dico(:,index(2)) > 0 %build the basis vectors v1 = dico(:,index(1))+dico(:,index(2)); v1 = v1/norm(v1); v2 = dico(:,index(1))-dico(:,index(2)); v2 = v2/norm(v2); dico(:,index(1)) = ctheta*v1+stheta*v2; dico(:,index(2)) = ctheta*v1-stheta*v2; else v1 = dico(:,index(1))-dico(:,index(2)); v1 = v1/norm(v1); v2 = dico(:,index(1))+dico(:,index(2)); v2 = v2/norm(v2); dico(:,index(1)) = ctheta*v1+stheta*v2; dico(:,index(2)) = -ctheta*v1+stheta*v2; end end end niter = niter+1; end %if a cell array of dictionaries is provided, decorrelate among %different dictionaries only else niter = 1; numDicos = length(dico); G = cell(numDicos); maxCorr = 0; for i = 1:numDicos for j = i+1:numDicos G{i,j} = dico{i}'*dico{j}; maxCorr = max(maxCorr,max(max(abs(G{i,j})))); end end while maxCorr > mu + eps % find pairs of high correlation atoms [colors nbColors] = dico_color_separate(dico, mu); % iterate on all pairs for c = 1:nbColors for tmpI = 1:numDicos index = find(colors{tmpI}==c); if ~isempty(index) i = tmpI; m = index; break; end end for tmpJ = i+1:numDicos index = find(colors{tmpJ}==c); if ~isempty(index) j = tmpJ; n = index; break; end end if dico{i}(:,m)'*dico{j}(:,n) > 0 %build the basis vectors v1 = dico{i}(:,m)+dico{j}(:,n); v1 = v1/norm(v1); v2 = dico{i}(:,m)-dico{j}(:,n); v2 = v2/norm(v2); dico{i}(:,m) = ctheta*v1+stheta*v2; dico{j}(:,n) = ctheta*v1-stheta*v2; else v1 = dico{i}(:,m)-dico{j}(:,n); v1 = v1/norm(v1); v2 = dico{i}(:,m)+dico{j}(:,n); v2 = v2/norm(v2); dico{i}(:,m) = ctheta*v1+stheta*v2; dico{j}(:,n) = -ctheta*v1+stheta*v2; end end niter = niter+1; % Remove noegative components and renormalize for i = 1:length(dico) dico{i} = max(dico{i},0); for m = 1:size(dico{i},2) dico{i}(:,m) = dico{i}(:,m)/norm(dico{i}(:,m)); end end maxCorr = 0; for i = 1:numDicos for j = i+1:numDicos G{i,j} = dico{i}'*dico{j}; maxCorr = max(maxCorr,max(max(abs(G{i,j})))); end end end end end