Mercurial > hg > smallbox
view DL/Majorization Minimization DL/dict_update_REG_fn.m @ 155:b14209313ba4 ivand_dev
Integration of Majorization Minimisation Dictionary Learning
author | Ivan Damnjanovic lnx <ivan.damnjanovic@eecs.qmul.ac.uk> |
---|---|
date | Mon, 22 Aug 2011 11:46:35 +0100 |
parents | |
children |
line wrap: on
line source
function [Phiout,unhatnz] = dict_update_REG_fn(Phi,x,unhat,maxIT,eps,cvset) %% Regularized Dictionary Learning with the constraint on the matrix frobenius norms %%%%% % Phi = Normalized Initial Dictionary % x = Signal(x). This can be a vector or a matrix % unhat = Initial guess for the coefficients % to = 1/(step size) . It is larger than spectral norm of coefficient matrix x % eps = Stopping criterion for iterative softthresholding and MM dictionary update % cvset = Dictionary constraint. 0 = Non convex ||D|| = N, 1 = Convex ||D||<=N % Phiout = Updated Dictionary % unhatnz Updated Coefficients (the same as input in this version) %% B = Phi; phim = norm(Phi, 'fro'); K = zeros(size(Phi,1),size(Phi,2)); c = .1 + svds(unhat,1)^2; %% i = 1; while (sum(sum((B-K).^2)) > eps)&&(i<=maxIT) if i>1 B = K; end K = 1/c *(x*unhat' + B*(c*eye(size(B,2))-unhat*unhat')); Kfn = sum(sum(K.^2)); if cvset == 1, K = min(1,phim/Kfn)*K; % with convex constraint set else K = (phim/Kfn)*K; % with fixed-norm constraint set end i = i+1; end %% depleted atoms cancellation %%% [Y,I] = sort(sum(K.^2),'descend'); RR = sum(Y>=0.0001); Phiout = K(:,I(1:RR)); unhatnz = unhat(I(1:RR),:); end