Mercurial > hg > smallbox
view DL/Majorization Minimization DL/ExactDicoRecovery/mod_exactRec.m @ 155:b14209313ba4 ivand_dev
Integration of Majorization Minimisation Dictionary Learning
author | Ivan Damnjanovic lnx <ivan.damnjanovic@eecs.qmul.ac.uk> |
---|---|
date | Mon, 22 Aug 2011 11:46:35 +0100 |
parents | |
children |
line wrap: on
line source
%%% MOD (||ki||<=1) %%%% function mod_exactRec(it,k,sn) tic IT = str2num(it); K = str2num(k); SN = str2num(sn); if SN<10, samnum = ['0',num2str(SN)]; else samnum = num2str(SN); end load(['Param',num2str(K),'kS',samnum,'.mat']) method = ['bn';'un']; res = 2; % 1 for bounded-norm, 2 for unit-norm lambda = 2*.2; % 2 * Smallest coefficients (Soft Thresholding) % lambda = 2*.2^2; % 2 * Smallest coefficients (Hard Thresholding) %%%%%%%%%%%%%% Phi = Phio; [PhiN,PhiM] = size(Phi); RR1 = PhiM; %%%%%%%%%%%%%% [PhiM,L] = size(ud); unhat = ones(PhiM,L); for it = 1:IT it to = .1+svds(Phi,1); [PhiN,PhiM] = size(Phi); %%%% % eps = 10^-7; eps = 3*10^-4; maxIT = 1000; map = 0; [unhat,l1err] = mm1(Phi,x,unhat,to,lambda,maxIT,eps,map); %% Sparse approximation with Iterative Soft-thresholding ert(it) = l1err; %%% [Phi,unhat] = modcn(x,unhat,res); end save(['MODl120t',num2str(IT),'iki',method(res,:),num2str(K),'v2d',num2str(SN),'.mat'],'Phi','Phid','x','ud','unhat','ert') toc