Mercurial > hg > smallbox
view DL/Majorization Minimization DL/ExactDicoRecovery/ExactRec_Demo.m @ 155:b14209313ba4 ivand_dev
Integration of Majorization Minimisation Dictionary Learning
author | Ivan Damnjanovic lnx <ivan.damnjanovic@eecs.qmul.ac.uk> |
---|---|
date | Mon, 22 Aug 2011 11:46:35 +0100 |
parents | |
children |
line wrap: on
line source
clear IT = 1000; % Number of iterations R = 3:7; % Sparsity of the signals SN = 5; % Number of trials M = 20; % Signal space dimension N = 40; % Ambient space dimension L = 32*N; % Number of training signals ParamGen(M,N,L,R,SN) % Generating generic problems %%%% Dictionary recovery algorithms for sn = 1:SN for r = R mmdlcn_exactRec_demo(IT,r,sn,'un') mapcn_exactRec_demo(IT,r,sn,'bn') ksvd_exactRec_demo(IT,r,sn) modcn_exactRec_demo(IT,r,sn) end end %%%%%%% Tre = .99; for k = R for i=1:SN load(['RDLl1',num2str(M),'t',num2str(IT),'ikiun',num2str(k),'v1d',num2str(i),'.mat']) nrRDLu(i,k-R(1)+1) = sum(max(abs((Phid'*Phi)))>=Tre); %%%%%% load(['MAPl1',num2str(M),'t',num2str(IT),'ikiun',num2str(k),'v1d',num2str(i),'.mat']) nrMAP(i,k-R(1)+1) = sum(max(abs((Phid'*Phi)))>=Tre); %%%%%% load(['KSVDl1',num2str(M),'t',num2str(IT),'ikiun',num2str(k),'v1d',num2str(i),'.mat']) nrKSVD(i,k-R(1)+1) = sum(max(abs((Phid'*Phi)))>=Tre); %%%%%% load(['MODl1',num2str(M),'t',num2str(IT),'ikiun',num2str(k),'v1d',num2str(i),'.mat']) nrMOD(i,k-R(1)+1) = sum(max(abs((Phid'*Phi)))>=Tre); end end clf errorbar(R+.01,10*mean(nrRDLu,1)/4,std(nrRDLu,0,1),'k-.') hold on errorbar(R-.01,10*mean(nrKSVD,1)/4,std(nrKSVD,0,1),'r*-') errorbar(R+.01,10*mean(nrMOD,1)/4,std(nrMOD,0,1),'b-v') errorbar(R-.01,10*mean(nrMAP,1)/4,std(nrMAP,0,1),'b-^') axis([2.5 7.5 15 105]); title('Constrained column-norm dictionaries') xlabel('Sparsity (# of non-zero elements in each coefficient vector)') ylabel(['Average percents of exact recovery',sprintf('\n'),'after ',num2str(IT),' iterations']) grid on legend('MM Unit norm','K-SVD','MOD','MAPbased-DL'); axis([2.8 7.2 -5 105])