Mercurial > hg > smallbox
view DL/Majorization Minimization DL/Demo.m @ 155:b14209313ba4 ivand_dev
Integration of Majorization Minimisation Dictionary Learning
author | Ivan Damnjanovic lnx <ivan.damnjanovic@eecs.qmul.ac.uk> |
---|---|
date | Mon, 22 Aug 2011 11:46:35 +0100 |
parents | |
children |
line wrap: on
line source
clear M = 20; % Signal length N = 40; % Coefficient Space Dimension L = 32*N; % Number of Training Samples R = 3; % Sparsity IT = 1000; % Number of alternating sparse approximation and dictionary update map = 1; % Debiasing. 0 = No, 1 = Yes maxIT = 1000; % Inner-loop maximum iteration number. lambda = 2*.2; % Lagrangian multiplier. epsx = 10^-7; % Stopping criterion for iterative softthresholding epsd = 10^-7; % Stopping criterion for MM dictionary update cvset = 0; % Dictionary constraint. 0 = Non convex ||d|| = 1, 1 = Convex ||d||<=1 Tre = .99; % Threshold for accepting too atoms identical %%%% Generative Dictionaries Do = randn(M,N); % Generative Dictionary Do = Do*(diag(sum((Do'*Do).*eye(length(Do))).^-.5)); % Normalization %%%% Sparse signal generation %%%%% Xo = zeros(N,L); % Original Sparse Coefficients for l = 1:L r = 1; while r<=R ind = fix(rand(1)*N)+ones(1); a = rand(1); if Xo(ind)==0 Xo(ind,l) = (.8*rand(1)+.2)*((a>=.5)-(a<.5)); r = r+1; end end end Y = Do*Xo; % Sparse Signals %%%% Algorithm initialization D = randn(M,N); % Initial Dictionary D = D*(diag(sum((D'*D).*eye(length(D))).^-.5)); % Normalization X = ones(size(Xo)); % Initial coefficients for it = 1:IT, it to = .1+svds(D,1); [X,cost(it)] = mm1(D,Y,X,to,lambda,maxIT,epsx,map); plot(cost); [D,X] = dict_update_REG_cn(D,Y,X,maxIT,epsd,cvset); end %%% success = sum(max(abs((Do'*D)))>=Tre); display([' ------------------']) display([' ',num2str(success),'% of the atoms successfully recovered after ',num2str(IT),' iterations.']);