Mercurial > hg > smallbox
view toolboxes/AudioInpaintingToolbox/Utils/makeClippedSignal.m @ 153:af307f247ac7 ivand_dev
Example scripts for Two Step Dictionary Learning - Image Denoising experiments.
author | Ivan Damnjanovic lnx <ivan.damnjanovic@eecs.qmul.ac.uk> |
---|---|
date | Fri, 29 Jul 2011 12:35:52 +0100 |
parents | 56d719a5fd31 |
children |
line wrap: on
line source
function [xClipped, IClipped, xClean, clipSizes] = makeClippedSignal(x,clippingLevel,GR) % Normalize and clip a signal. % % Usage: % [xClipped, IClipped, xClean, clipSizes] = makeClippedSignal(x,clippingLevel,GR) % % Inputs: % - x: input signal (may be multichannel) % - clippingLevel: clipping level, between 0 and 1 % - GR (default: false): flag to generate an optional graphical display % % Outputs: % - xClipped: clipped signal % - IClipped: boolean vector (same size as xClipped) that indexes clipped % samples % - xClean: clean signal % - clipSizes: size of the clipped segments % % Note that the input signal is normalized to 0.9999 (-1 is not allowed in % wav files) to provide xClipped and xClean. % % ------------------- % % Audio Inpainting toolbox % Date: June 28, 2011 % By Valentin Emiya, Amir Adler, Maria Jafari % This code is distributed under the terms of the GNU Public License version 3 (http://www.gnu.org/licenses/gpl.txt). if nargin<3 || isempty(GR) GR = false; end %% Normalization xMax = 0.9999; xClean = x/max(abs(x(:)))*xMax; clippingLevel = clippingLevel*xMax; %% DISABLED - Ramp to produce a clipping level that linearly increases if 0 xClean = xClean.*(1:length(xClean))'/length(xClean); end %% Clipping (hard threshold) xClipped = min(max(xClean,-clippingLevel),clippingLevel); IClipped = abs(xClipped)>=clippingLevel; % related indices %% Size of the clipped segments if nargout>3 || GR % clipSizes = diff(find(diff(~IClipped))); % clipSizes = clipSizes(2-(IClipped(1)==0):2:end); clipSizes = diff(IClipped); if clipSizes(find(clipSizes,1,'first'))==-1,clipSizes = [1;clipSizes]; end if clipSizes(find(clipSizes,1,'last'))==1,clipSizes = [clipSizes;-1]; end clipSizes = diff(find(clipSizes)); clipSizes = clipSizes(1:2:end); end %% Optional graphical display if GR % Plot histogram of the sizes of the clipped segments if ~isempty(clipSizes) figure hist(clipSizes,1:max(clipSizes)) title('Size of missing segments') xlabel('Size'),ylabel('# of segments') end t = (0:length(xClean)-1); % time scale in samples % Plot original and clipped signals figure plot(t,xClean,'',t,xClipped,'') legend('original','clipped') % Scatter plot between original and clipped signals figure plot(xClean,xClipped,'.') xlabel('Original signal'),ylabel('Clipped signal') % Spectrograms N = 512; w = hann(N); fs = 1; NOverlap = round(.8*N); nfft = 2^nextpow2(N)*2*2; figure subplot(3,3,[1,4]) spectrogram(xClean,w,NOverlap,nfft,fs,'yaxis') title('Original') xlim(t([1,end])) cl = get(gca,'clim'); set(gca,'clim',cl); subplot(3,3,[1,4]+1) spectrogram(xClipped,w,NOverlap,nfft,fs,'yaxis') title('Clipped') set(gca,'clim',cl); subplot(3,3,[1,4]+2) spectrogram(xClean-xClipped,w,NOverlap,nfft,fs,'yaxis') title('Error (=original-clipped)') set(gca,'clim',cl); subplot(3,3,7) plot(t,xClean,'');xlim(t([1,end])) subplot(3,3,8) plot(t,xClean,'',t,xClipped,'');xlim(t([1,end])) subplot(3,3,9) plot(t,xClean-xClipped,'');xlim(t([1,end])) end return