Mercurial > hg > smallbox
view toolboxes/AudioInpaintingToolbox/Experiments/MissingSampleTopologyExperiment/MissingSampleTopologyExperiment.m @ 153:af307f247ac7 ivand_dev
Example scripts for Two Step Dictionary Learning - Image Denoising experiments.
author | Ivan Damnjanovic lnx <ivan.damnjanovic@eecs.qmul.ac.uk> |
---|---|
date | Fri, 29 Jul 2011 12:35:52 +0100 |
parents | 56d719a5fd31 |
children |
line wrap: on
line source
function MissingSampleTopologyExperiment(expParam) % For a total number of missing samples C in a frame, create several % configuration of B holes with length A, where A*B=C (i.e. the total % number of missing samples is constant). Test several values of C, several % solvers. For each C, test all possible combination of (A,B) such that % A*B=C. % Note that for each combination (A,B), a number of frames are tested at % random and SNR results are then averaged. % % Usage: MissingSampleTopologyExperiment(expParam) % % % Inputs: % - expParam is an optional structure where the user can define % the experiment parameters. % - expParam.soundDir: path to sound directory. All the .wav files % in this directory will be tested at random. % - expParam.destDir: path to store the results. % - expParam.N: frame length % - expParam.NFramesPerHoleSize: number of frames to use for each % testing configuration (A,B). Results are then averaged. % - expParam.totalMissSamplesList: list of all tested values C for % the total number of missing samples in a frame % - expParam.solvers: list of solvers with their parameters % % ------------------- % % Audio Inpainting toolbox % Date: June 28, 2011 % By Valentin Emiya, Amir Adler, Maria Jafari % This code is distributed under the terms of the GNU Public License version 3 (http://www.gnu.org/licenses/gpl.txt). if ~isdeployed addpath('../../Problems/'); addpath('../../Solvers/'); addpath('../../Utils/'); addpath('../../Utils/dictionaries/'); addpath('../../Utils/evaluation/'); % addpath('../../Utils/TCPIP_SocketCom/'); % javaaddpath('../../Utils/TCPIP_SocketCom'); dbstop if error close all end %% Set parameters if nargin<1 expParam = []; end % Path to audio files if ~isfield(expParam,'soundDir'), expParam.soundDir = '../../Data/testSpeech8kHz_from16kHz/'; end if ~isfield(expParam,'destDir'), expParam.destDir = '../../tmp/missSampTopoExp/'; end if ~exist(expParam.destDir,'dir') mkdir(expParam.destDir) end % frame length if ~isfield(expParam,'N'), expParam.N = 512; expParam.N = 256; warning('AITB:N','Frame length=256 is used to have faster computations. Recommended frame length is 512 at 8kHz.'); end % Number of random frames to test if ~isfield(expParam,'NFramesPerHoleSize'), expParam.NFramesPerHoleSize = 20; warning('AITB:NFrames','expParam.NFramesPerHoleSize = 20 is used to have faster computations. Recommended value: several hundreds.'); end % Number of missing samples: which numbers to test? if ~isfield(expParam,'totalMissSamplesList') expParam.totalMissSamplesList = [12,36,60,120,180,240]; expParam.totalMissSamplesList = [12,36]; warning('AITB:Miss','expParam.totalMissSamplesList = [12,36] is used to have faster computations. Recommended list: expParam.totalMissSamplesList = [12,36,60,120,180,240].'); end % Choose the solver methods you would like to test: OMP, L1, Janssen if ~isfield(expParam,'solvers'), nSolver = 0; nSolver = nSolver+1; expParam.solvers(nSolver).name = 'OMP-G'; expParam.solvers(nSolver).inpaintFrame = @inpaintFrame_OMP_Gabor; % solver function expParam.solvers(nSolver).param.N = expParam.N; % frame length expParam.solvers(nSolver).param.OMPerr = 0.001; expParam.solvers(nSolver).param.sparsityDegree = expParam.solvers(nSolver).param.N/4; expParam.solvers(nSolver).param.D_fun = @Gabor_Dictionary; % Dictionary (function handle) expParam.solvers(nSolver).param.redundancyFactor = 2; % Dictionary redundancy expParam.solvers(nSolver).param.wa = @wRect; % Analysis window nSolver = nSolver+1; expParam.solvers(nSolver).name = 'Janssen'; expParam.solvers(nSolver).inpaintFrame = @inpaintFrame_janssenInterpolation; % solver function expParam.solvers(nSolver).param.N = expParam.N; % frame length end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% soundDir = expParam.soundDir; wavFiles = dir([soundDir '*.wav']); wavFiles = arrayfun(@(x)[soundDir x.name],wavFiles,'UniformOutput',false); %% Draw a list of random frames % Choose an audio file at random frameParam.kFrameFile = randi(length(wavFiles),expParam.NFramesPerHoleSize); % For each audio file, find maximum mean energy among all frames [dum fs] = wavread([soundDir wavFiles{1}],'size'); Ne = round(512/16000*fs); E2m = zeros(length(wavFiles),1); for kf = 1:length(wavFiles) x=wavread(wavFiles{kf}); xm = filter(ones(Ne,1)/Ne,1,abs(x.^2)); E2m(kf) = 10*log10(max(xm)); end % Choose the location of a frame at random, with a minimum energy maxDiffE2m = 10; frameParam.kFrameBegin = NaN(expParam.NFramesPerHoleSize,1); for kf = 1:expParam.NFramesPerHoleSize siz = wavread(wavFiles{frameParam.kFrameFile(kf)},'size'); while true frameParam.kFrameBegin(kf) = randi(siz(1)-expParam.N+1); x = wavread(wavFiles{frameParam.kFrameFile(kf)},[0,expParam.N-1]+frameParam.kFrameBegin(kf)); E2m0 = 10*log10(mean(abs(x.^2))); if E2m(frameParam.kFrameFile(kf))-E2m0 <= maxDiffE2m break end end end %% Test each number of missing samples PerfRes = cell(length(expParam.totalMissSamplesList),length(expParam.solvers)); factorsToTest = cell(length(expParam.totalMissSamplesList),length(expParam.solvers)); outputFile = [expParam.destDir 'missSampTopoExp.mat']; for kSolver = 1:length(expParam.solvers) fprintf('\n ------ Solver: %s ------\n\n',... expParam.solvers(kSolver).name); for kMiss = 1:length(expParam.totalMissSamplesList) NMissSamples = expParam.totalMissSamplesList(kMiss); factorsToTest{kMiss} = allFactors(NMissSamples); PerfRes{kMiss,kSolver} = zeros([length(factorsToTest{kMiss}),expParam.NFramesPerHoleSize]); for kFactor = 1:length(factorsToTest{kMiss}) holeSize = factorsToTest{kMiss}(kFactor); NHoles = NMissSamples/holeSize; fprintf('%d %d-length holes (%d missing samples = %.1f%%)\n',... NHoles,holeSize,NMissSamples,NMissSamples/expParam.N*100) problemParameters.holeSize = holeSize; problemParameters.NHoles = NHoles; for kFrame = 1:expParam.NFramesPerHoleSize %% load audio frame xFrame = wavread(... wavFiles{frameParam.kFrameFile(kFrame)},... frameParam.kFrameBegin(kFrame)+[0,expParam.N-1]); %% generate problem [problemData, solutionData] = ... generateMissingGroupsProblem(xFrame,problemParameters); %% solve problem xEst = ... expParam.solvers(kSolver).inpaintFrame(... problemData,... expParam.solvers(kSolver).param); %% compute and store performance [SNRAll, SNRmiss] = ... SNRInpaintingPerformance(... solutionData.xClean,... problemData.x,... xEst,... problemData.IMiss); PerfRes{kMiss,kSolver}(kFactor,kFrame) = SNRmiss(2); end end save(outputFile,'PerfRes','expParam'); end end figure Nrows = floor(sqrt(length(expParam.solvers))); Ncols = ceil(sqrt(length(expParam.solvers))/Nrows); cmap = lines; for kSolver = 1:length(expParam.solvers) subplot(Nrows,Ncols,kSolver) hold on,grid on for kMiss = 1:length(expParam.totalMissSamplesList) plot(factorsToTest{kMiss},mean(PerfRes{kMiss,kSolver},2),... 'color',cmap(kMiss,:)); end title(expParam.solvers(kSolver).name) end return function m = allFactors(n) % Find the list of all factors (not only prime factors) primeFactors = factor(n); degrees = zeros(size(primeFactors)); for k=1:length(degrees) degrees(k) = sum(primeFactors==primeFactors(k)); end [primeFactors, I] = unique(primeFactors); degrees = degrees(I); D = (0:degrees(1)).'; for k=2:length(degrees) Dk = ones(size(D,1),1)*(0:degrees(k)); D = [repmat(D,degrees(k)+1,1),Dk(:)]; end m = unique(sort(prod((ones(size(D,1),1)*primeFactors).^D,2))); return