Mercurial > hg > smallbox
view toolboxes/AudioInpaintingToolbox/Experiments/DeclippingExperiment/declippingExperiment.m @ 153:af307f247ac7 ivand_dev
Example scripts for Two Step Dictionary Learning - Image Denoising experiments.
author | Ivan Damnjanovic lnx <ivan.damnjanovic@eecs.qmul.ac.uk> |
---|---|
date | Fri, 29 Jul 2011 12:35:52 +0100 |
parents | 56d719a5fd31 |
children |
line wrap: on
line source
function declippingExperiment(expParam) % Declip several sounds with different clipping levels, using several % solvers. % % Usage: declippingExperiment(expParam) % % % Inputs: % - expParam is an optional structure where the user can define % the experiment parameters. % - expParam.clippingScale: clipping values to test, as a vector % of real numbers in ]0,1[. % - expParam.soundDir: path to sound directory. All the .wav files % in this directory will be tested. % - expParam.destDir: path to store the results. % - expParam.solvers: list of solvers with their parameters % % % ------------------- % % Audio Inpainting toolbox % Date: June 28, 2011 % By Valentin Emiya, Amir Adler, Maria Jafari % This code is distributed under the terms of the GNU Public License version 3 (http://www.gnu.org/licenses/gpl.txt). if ~isdeployed addpath('../../Problems/'); addpath('../../Solvers/'); addpath('../../Utils/'); addpath('../../Utils/dictionaries/'); addpath('../../Utils/evaluation/'); % addpath('../../Utils/TCPIP_SocketCom/'); % javaaddpath('../../Utils/TCPIP_SocketCom'); dbstop if error close all end if nargin<1 expParam = []; end if ~isfield(expParam,'clippingScale'), expParam.clippingScale = 0.4:0.2:0.8; end if ~isfield(expParam,'soundDir'), expParam.soundDir = '../../Data/testSpeech8kHz_from16kHz/'; expParam.soundDir = '../../Data/shortTest/'; warning('AITB:soundDir','soundDir has only one sound to have faster computations. Recommended soundDir: ../../Data/testSpeech8kHz_from16kHz/'); end if ~isfield(expParam,'destDir'), expParam.destDir = '../../tmp/declip/'; end %% Set parameters if ~isfield(expParam,'solvers'), % Choose the solver methods you would like to test: OMP, L1, Janssen warning('AITB:N','Frame length=256 is used to have faster computations. Recommended frame length is 512 at 8kHz.'); warning('AITB:overlap','Overlap factor=2 is used to have faster computations. Recommended value: 4.'); nSolver = 0; nSolver = nSolver+1; expParam.solvers(nSolver).name = 'OMP-C'; expParam.solvers(nSolver).function = @inpaintSignal_IndependentProcessingOfFrames; expParam.solvers(nSolver).param.N = 512; % frame length expParam.solvers(nSolver).param.N = 256; % frame length expParam.solvers(nSolver).param.inpaintFrame = @inpaintFrame_OMP; % solver function expParam.solvers(nSolver).param.OMPerr = 0.001; expParam.solvers(nSolver).param.sparsityDegree = expParam.solvers(nSolver).param.N/4; expParam.solvers(nSolver).param.D_fun = @DCT_Dictionary; % Dictionary (function handle) expParam.solvers(nSolver).param.OLA_frameOverlapFactor = 4; expParam.solvers(nSolver).param.OLA_frameOverlapFactor = 2; expParam.solvers(nSolver).param.redundancyFactor = 2; % Dictionary redundancy expParam.solvers(nSolver).param.wd = @wRect; % Weighting window for dictionary atoms expParam.solvers(nSolver).param.wa = @wRect; % Analysis window expParam.solvers(nSolver).param.OLA_ws = @wSine; % Synthesis window expParam.solvers(nSolver).param.SKIP_CLEAN_FRAMES = true; % do not process frames where there is no missing samples expParam.solvers(nSolver).param.MULTITHREAD_FRAME_PROCESSING = false; % not implemented yet nSolver = nSolver+1; expParam.solvers(nSolver).name = 'consOMP-C'; expParam.solvers(nSolver).function = @inpaintSignal_IndependentProcessingOfFrames; expParam.solvers(nSolver).param.N = 512; % frame length expParam.solvers(nSolver).param.N = 256; % frame length expParam.solvers(nSolver).param.inpaintFrame = @inpaintFrame_consOMP; % solver function expParam.solvers(nSolver).param.OMPerr = 0.001; expParam.solvers(nSolver).param.sparsityDegree = expParam.solvers(nSolver).param.N/4; expParam.solvers(nSolver).param.D_fun = @DCT_Dictionary; % Dictionary (function handle) expParam.solvers(nSolver).param.OLA_frameOverlapFactor = 4; expParam.solvers(nSolver).param.OLA_frameOverlapFactor = 2; expParam.solvers(nSolver).param.redundancyFactor = 2; % Dictionary redundancy expParam.solvers(nSolver).param.wd = @wRect; % Weighting window for dictionary atoms expParam.solvers(nSolver).param.wa = @wRect; % Analysis window expParam.solvers(nSolver).param.OLA_ws = @wSine; % Synthesis window expParam.solvers(nSolver).param.SKIP_CLEAN_FRAMES = true; % do not process frames where there is no missing samples expParam.solvers(nSolver).param.MULTITHREAD_FRAME_PROCESSING = false; % not implemented yet nSolver = nSolver+1; expParam.solvers(nSolver).name = 'OMP-G'; expParam.solvers(nSolver).function = @inpaintSignal_IndependentProcessingOfFrames; expParam.solvers(nSolver).param.N = 512; % frame length expParam.solvers(nSolver).param.N = 256; % frame length expParam.solvers(nSolver).param.inpaintFrame = @inpaintFrame_OMP_Gabor; % solver function expParam.solvers(nSolver).param.OMPerr = 0.001; expParam.solvers(nSolver).param.sparsityDegree = expParam.solvers(nSolver).param.N/4; expParam.solvers(nSolver).param.D_fun = @Gabor_Dictionary; % Dictionary (function handle) expParam.solvers(nSolver).param.OLA_frameOverlapFactor = 4; expParam.solvers(nSolver).param.OLA_frameOverlapFactor = 2; expParam.solvers(nSolver).param.redundancyFactor = 2; % Dictionary redundancy expParam.solvers(nSolver).param.wd = @wRect; % Weighting window for dictionary atoms expParam.solvers(nSolver).param.wa = @wRect; % Analysis window expParam.solvers(nSolver).param.OLA_ws = @wSine; % Synthesis window expParam.solvers(nSolver).param.SKIP_CLEAN_FRAMES = true; % do not process frames where there is no missing samples expParam.solvers(nSolver).param.MULTITHREAD_FRAME_PROCESSING = false; % not implemented yet nSolver = nSolver+1; expParam.solvers(nSolver).name = 'consOMP-G'; expParam.solvers(nSolver).function = @inpaintSignal_IndependentProcessingOfFrames; expParam.solvers(nSolver).param.N = 512; % frame length expParam.solvers(nSolver).param.N = 256; % frame length expParam.solvers(nSolver).param.inpaintFrame = @inpaintFrame_consOMP_Gabor; % solver function expParam.solvers(nSolver).param.OMPerr = 0.001; expParam.solvers(nSolver).param.sparsityDegree = expParam.solvers(nSolver).param.N/4; expParam.solvers(nSolver).param.D_fun = @Gabor_Dictionary; % Dictionary (function handle) expParam.solvers(nSolver).param.OLA_frameOverlapFactor = 4; expParam.solvers(nSolver).param.OLA_frameOverlapFactor = 2 expParam.solvers(nSolver).param.redundancyFactor = 2; % Dictionary redundancy expParam.solvers(nSolver).param.wd = @wRect; % Weighting window for dictionary atoms expParam.solvers(nSolver).param.wa = @wRect; % Analysis window expParam.solvers(nSolver).param.OLA_ws = @wSine; % Synthesis window expParam.solvers(nSolver).param.SKIP_CLEAN_FRAMES = true; % do not process frames where there is no missing samples expParam.solvers(nSolver).param.MULTITHREAD_FRAME_PROCESSING = false; % not implemented yet nSolver = nSolver+1; expParam.solvers(nSolver).name = 'Janssen'; expParam.solvers(nSolver).function = @inpaintSignal_IndependentProcessingOfFrames; expParam.solvers(nSolver).param.inpaintFrame = @inpaintFrame_janssenInterpolation; % solver function expParam.solvers(nSolver).param.N = 512; % frame length expParam.solvers(nSolver).param.N = 256; expParam.solvers(nSolver).param.OLA_frameOverlapFactor = 4; expParam.solvers(nSolver).param.OLA_frameOverlapFactor = 2 expParam.solvers(nSolver).param.wa = @wRect; % Analysis window expParam.solvers(nSolver).param.OLA_ws = @wSine; % Synthesis window expParam.solvers(nSolver).param.SKIP_CLEAN_FRAMES = true; % do not process frames where there is no missing samples expParam.solvers(nSolver).param.MULTITHREAD_FRAME_PROCESSING = false; % not implemented yet end SNRClip = zeros(0,0,0); fprintf('Folder %s\n',expParam.soundDir); if ~exist(expParam.destDir,'dir') mkdir(expParam.destDir) end soundFiles = dir([expParam.soundDir '*.wav']); for kf = 1:length(soundFiles) soundfile = [expParam.soundDir soundFiles(kf).name]; fprintf(' File %s\n',soundfile); %% Read test signal [x fs] = wavread(soundfile); for kClip = 1:length(expParam.clippingScale) clippingLevel = expParam.clippingScale(kClip); fprintf(' Clip level %g\n',clippingLevel); %% Generate the problem [problemData, solutionData] = generateDeclippingProblem(x,clippingLevel); for nSolver = 1:length(expParam.solvers) %% Declip with solver solverParam = expParam.solvers(nSolver).param; [xEst1 xEst2] = expParam.solvers(nSolver).function(problemData,solverParam); %% compute performance L = length(xEst1); N = solverParam.N; [SNRAll, SNRmiss] = ... SNRInpaintingPerformance(... solutionData.xClean(N:L-N),... problemData.x(N:L-N),... xEst2(N:L-N),... problemData.IMiss(N:L-N)); SNRClip(kf,kClip,nSolver) = SNRmiss(2); % normalize and save both the reference and the estimates! normX = 1.1*max(abs([xEst1(:);xEst2(:);solutionData.xClean(:)])); L = min([length(xEst2),length(xEst1),length(solutionData.xClean),length(problemData.x)]); xEst1 = xEst1(1:L)/normX; xEst2 = xEst2(1:L)/normX; xClipped = problemData.x(1:L)/normX; xClean = solutionData.xClean(1:L)/normX; wavwrite(xEst1,fs,sprintf('%s%s%s%g.wav',expParam.destDir,soundFiles(kf).name(1:end-4),'Est1',clippingLevel)); wavwrite(xEst2,fs,sprintf('%s%s%s%g.wav',expParam.destDir,soundFiles(kf).name(1:end-4),'Est2',clippingLevel)); wavwrite(xClipped,fs,sprintf('%s%s%s%g.wav',expParam.destDir,soundFiles(kf).name(1:end-4),'Clipped',clippingLevel)); wavwrite(xClean,fs,sprintf('%s%s%s%g.wav',expParam.destDir,soundFiles(kf).name(1:end-4),'Ref',clippingLevel)); fprintf('\n'); clear a xEst1 xEst2 xClipped xClean IClipped save([expParam.destDir 'clippingExp.mat']); end end end %% Plot results averageSNR = squeeze(mean(SNRClip,1)); disp(averageSNR) figure, plot(averageSNR) legend(arrayfun(@(x)x.name,expParam.solvers,'UniformOutput',false)); xlabel('Clipping level') ylabel('SNR') return