view DL/two-step DL/dico_color_separate.m @ 216:a986ee86651e luisf_dev

Calls SMALLboxInit in the beginning of both solve and learn, in order not to lose the SMALL_path variable.
author luisf <luis.figueira@eecs.qmul.ac.uk>
date Thu, 22 Mar 2012 11:41:04 +0000
parents 69ce11724b1f
children
line wrap: on
line source
function [colors nbColors] = dico_color_separate(dico, mu)
    % DICO_COLOR cluster several dictionaries in pairs of high correlation
    % atoms. Called by dico_decorr.
    %
    % Parameters:
    % -dico: the dictionaries
    % -mu: the correlation threshold
    %
    % Result:
    % -colors: a cell array of indices. Two atoms with the same color have
    % a correlation greater than mu
    
    
    numDico = length(dico);
    colors = cell(numDico,1);
    for i = 1:numDico
        colors{i} = zeros(length(dico{i}),1);
    end
    
    G = cell(numDico);
    
    % compute the correlations
    for i = 1:numDico
        for j = i+1:numDico
            G{i,j} = abs(dico{i}'*dico{j});
        end
    end
    
    % iterate on the correlations higher than mu
    c = 1;
    [maxCorr, i, j, m, n] = findMaxCorr(G);
    while maxCorr > mu
        % find the highest correlated pair
        
        % color them
        colors{i}(m) = c;
        colors{j}(n) = c;
        c = c+1;
        
        % make sure these atoms never get selected again
        % Set to zero relevant lines in the Gram Matrix
        for j2 = i+1:numDico
            G{i,j2}(m,:) = 0;
        end
        
        for i2 = 1:i-1
            G{i2,i}(:,m) = 0;
        end
        
        for j2 = j+1:numDico
            G{j,j2}(n,:) = 0;
        end
        
        for i2 = 1:j-1
            G{i2,j}(:,n) = 0;
        end
        
        % find the next correlation
        [maxCorr, i, j, m, n] = findMaxCorr(G);
    end
    
    % complete the coloring with singletons
    % index = find(colors==0);
    % colors(index) = c:c+length(index)-1;
    nbColors = c-1;
end

function [val, i, j, m, n] = findMaxCorr(G)
    %FINDMAXCORR find the maximal correlation in the cellular Gram matrix
    %
    %   Input:
    %   -G: the Gram matrix
    %
    %   Output:
    %   -val: value of the correlation
    %   -i,j,m,n: indices of the argmax. The maximal correlation is reached
    %   for the m^th atom of the i^th dictionary and the n^h atom of the
    %   j^h dictionary
    
    val = -1;
    for tmpI = 1:length(G)
        for tmpJ = tmpI+1:length(G)
            [tmpVal tmpM] = max(G{tmpI,tmpJ},[],1);
            [tmpVal tmpN] = max(tmpVal);
            if tmpVal > val
                val = tmpVal; 
                i = tmpI;
                j = tmpJ;
                n = tmpN;
                m = tmpM(n);
            end
        end
    end
end