Mercurial > hg > smallbox
view util/ksvd utils/reggrid.m @ 81:a30e8bd6d948
matlab_midi scripts
author | Ivan <ivan.damnjanovic@eecs.qmul.ac.uk> |
---|---|
date | Mon, 28 Mar 2011 17:35:01 +0100 |
parents | c3eca463202d |
children |
line wrap: on
line source
function [varargout] = reggrid(sz,num,mode) %REGGRID Regular sampling grid. % [I1,I2,...,Ip] = REGGRID([N1 N2 ... Np], NUM) returns the indices % of a regular uniform sampling grid over a p-dimensional matrix with % dimensions N1xN2x...xNp. NUM is the minimal number of required samples, % and it is ensured that the actual number of samples, given by % length(I1)xlength(I2)x...xlength(Ip), is at least as large as NUM. % % [I1,I2,...,Ip] = REGGRID([N1 N2 ... Np], NUM,'MODE') specifies the % method for distributing the samples along each dimension. Valid modes % include 'eqdist' (the default mode) and 'eqnum'. 'eqdist' indicates an % equal distance between the samples in each dimension, while 'eqnum' % indicates an equal number of samples in each dimension. % % Notes about MODE: % % 1. The 'eqnum' mode will generally fail when the p-th root of NUM % (i.e. NUM^(1/p)) is larger than min([N1 N2 ... Np]). Thus 'eqdist' is % the more useful choice for sampling an arbitrary number of samples % from the matrix (up to the total number of matrix entries). % % 2. In both modes, the equality (of the distance between samples, or % the number of samples in each dimension) is only approximate. This is % because REGGRID attempts to maintain the appropriate equality while at % the same time find a sampling pattern where the total number of % samples is as close as possible to NUM. In general, the larger {Ni} % and NUM are, the tighter the equality. % % Example: Sample a set of blocks uniformly from a 2D image. % % n = 512; blocknum = 20000; blocksize = [8 8]; % im = rand(n,n); % [i1,i2] = reggrid(size(im)-blocksize+1, blocknum); % blocks = sampgrid(im, blocksize, i1, i2); % % See also SAMPGRID. % Ron Rubinstein % Computer Science Department % Technion, Haifa 32000 Israel % ronrubin@cs % % November 2007 dim = length(sz); if (nargin<3) mode = 'eqdist'; end if (any(sz<1)) error(['Invalid matrix size : [' num2str(sz) ']']); end if (num > prod(sz)) warning(['Invalid number of samples, returning maximum number of samples.']); elseif (num <= 0) if (num < 0) warning('Invalid number of samples, assuming 0 samples.'); end for i = 1:length(sz) varargout{i} = []; end return; end if (strcmp(mode,'eqdist')) % approximate distance between samples: total volume divided by number of % samples gives the average volume per sample. then, taking the p-th root % gives the average distance between samples d = (prod(sz)/num)^(1/dim); % compute the initial guess for number of samples in each dimension. % then, while total number of samples is too large, decrese the number of % samples by one in the dimension where the samples are the most crowded. % finally, do the opposite process until just passing num, so the final % number of samples is the closest to num from above. n = min(max(round(sz/d),1),sz); % set n so that it saturates at 1 and sz active_dims = find(n>1); % dimensions where the sample num can be reduced while(prod(n)>num && ~isempty(active_dims)) [y,id] = min((sz(active_dims)-1)./n(active_dims)); n(active_dims(id)) = n(active_dims(id))-1; if (n(active_dims(id)) < 2) active_dims = find(n>1); end end active_dims = find(n<sz); % dimensions where the sample num can be increased while(prod(n)<num && ~isempty(active_dims)) [y,id] = max((sz(active_dims)-1)./n(active_dims)); n(active_dims(id)) = n(active_dims(id))+1; if (n(active_dims(id)) >= sz(active_dims(id))) active_dims = find(n<sz); end end for i = 1:dim varargout{i} = round((1:n(i))/n(i)*sz(i)); varargout{i} = varargout{i} - floor((varargout{i}(1)-1)/2); end elseif (strcmp(mode,'eqnum')) % same idea as above n = min(max( ones(size(sz)) * round(num^(1/dim)) ,1),sz); active_dims = find(n>1); while(prod(n)>num && ~isempty(active_dims)) [y,id] = min((sz(active_dims)-1)./n(active_dims)); n(active_dims(id)) = n(active_dims(id))-1; if (n(active_dims(id)) < 2) active_dims = find(n>1); end end active_dims = find(n<sz); while(prod(n)<num && ~isempty(active_dims)) [y,id] = max((sz(active_dims)-1)./n(active_dims)); n(active_dims(id)) = n(active_dims(id))+1; if (n(active_dims(id)) >= sz(active_dims(id))) active_dims = find(n<sz); end end for i = 1:dim varargout{i} = round((1:n(i))/n(i)*sz(i)); varargout{i} = varargout{i} - floor((varargout{i}(1)-1)/2); end else error('Invalid sampling mode'); end