Mercurial > hg > smallbox
view DL/RLS-DLA/SMALL_rlsdla.m @ 81:a30e8bd6d948
matlab_midi scripts
author | Ivan <ivan.damnjanovic@eecs.qmul.ac.uk> |
---|---|
date | Mon, 28 Mar 2011 17:35:01 +0100 |
parents | a02503d91c8d |
children | fd1c32cda22c |
line wrap: on
line source
function Dictionary = SMALL_rlsdla(X, params) CODE_SPARSITY = 1; CODE_ERROR = 2; % Determine which method will be used for sparse representation step - % Sparsity or Error mode if (isfield(params,'codemode')) switch lower(params.codemode) case 'sparsity' codemode = CODE_SPARSITY; thresh = params.Tdata; case 'error' codemode = CODE_ERROR; thresh = params.Edata; otherwise error('Invalid coding mode specified'); end elseif (isfield(params,'Tdata')) codemode = CODE_SPARSITY; thresh = params.Tdata; elseif (isfield(params,'Edata')) codemode = CODE_ERROR; thresh = params.Edata; else error('Data sparse-coding target not specified'); end % max number of atoms % if (codemode==CODE_ERROR && isfield(params,'maxatoms')) maxatoms = params.maxatoms; else maxatoms = -1; end % Forgetting factor if (isfield(params,'forgettingMode')) switch lower(params.forgettingMode) case 'fix' if (isfield(params,'forgettingFactor')) lambda=params.forgettingFactor; else lambda=1; end otherwise error('This mode is still not implemented'); end elseif (isfield(params,'forgettingFactor')) lambda=params.forgettingFactor; else lambda=1; end % determine dictionary size % if (isfield(params,'initdict')) if (any(size(params.initdict)==1) && all(iswhole(params.initdict(:)))) dictsize = length(params.initdict); else dictsize = size(params.initdict,2); end end if (isfield(params,'dictsize')) % this superceedes the size determined by initdict dictsize = params.dictsize; end if (size(X,2) < dictsize) error('Number of training signals is smaller than number of atoms to train'); end % initialize the dictionary % if (isfield(params,'initdict')) if (any(size(params.initdict)==1) && all(iswhole(params.initdict(:)))) D = X(:,params.initdict(1:dictsize)); else if (size(params.initdict,1)~=size(X,1) || size(params.initdict,2)<dictsize) error('Invalid initial dictionary'); end D = params.initdict(:,1:dictsize); end else data_ids = find(colnorms_squared(X) > 1e-6); % ensure no zero data elements are chosen perm = randperm(length(data_ids)); D = X(:,data_ids(perm(1:dictsize))); end % normalize the dictionary % D = normcols(D); % Training data data=X; cnt=size(data,2); % C=(100000*thresh)*eye(dictsize); w=zeros(dictsize,1); u=zeros(dictsize,1); for i = 1:cnt if (codemode == CODE_SPARSITY) w = ompmex(D,data(:,i),[],thresh,'checkdict','off'); else w = omp2(D,data(:,i),[],thresh,'maxatoms',maxatoms, 'checkdict','off'); end spind=find(w); residual = data(:,i) - D * w; if (lambda~=1) C = C *(1/ lambda); end u = C(:,spind) * w(spind); alfa = 1/(1 + w' * u); D = D + (alfa * residual) * u'; C = C - (alfa * u)* u'; end Dictionary = D; end