Mercurial > hg > smallbox
view toolboxes/alps/ALPS/AlgebraicPursuit.m @ 165:775caafd5651
Added tag release_1.9 for changeset 4205744092e6
author | Ivan Damnjanovic lnx <ivan.damnjanovic@eecs.qmul.ac.uk> |
---|---|
date | Wed, 07 Sep 2011 14:17:55 +0100 |
parents | 0de08f68256b |
children |
line wrap: on
line source
function [x_hat, numiter, time, x_path] = AlgebraicPursuit(y, Phi, K, varargin) % ========================================================================= % Algebraic Pursuit algorithms - Beta Version % ========================================================================= % Algebraic Pursuit (ALPS) algorithms are accelerated hard thresholding methods % on sparse recovery of linear inverse systems. In particular, let % Phi : M x N real matrix (M < N) % x* : N x 1 K-sparse data vector % n : N x 1 additive noise vector % then, y = Phi x* + n is the undersampled M x 1 measurement vector. ALPS % solve the following minimization problem % minimize ||y - Phi x||^2 subject to x is K-sparse vector. % % Detailed discussion on the algorithm can be found in % [1] "On Accelerated Hard Thresholding Methods for Sparse Approximation", written % by Volkan Cevher, Technical Report, 2011. % ========================================================================= % INPUT ARGUMENTS: % y M x 1 undersampled measurement vector. % Phi M x N regression matrix. % K Sparsity of underlying vector x* or desired % sparsity of solution. % varargin Set of parameters. These are: % % memory,... Memory (momentum) of proposed algorithm. % Possible values are 0,1,'infty' for memoryless, % one memory and infinity memory ALPS, % respectively. Default value: memory = 0. % tol,... Early stopping tolerance. Default value: tol = % 1-e5. % ALPSiters,... Maximum number of algorithm iterations. Default % value: 300. % mode, ... According to [1], possible values are % [0,1,2,4,5,6]. This value comes from the binary % representation of the parameters: % (solveNewtob, gradientDescentx, solveNewtonx), % which are explained next. Default value = 0. % mu,... Variable that controls the step size selection. % When mu = 0, step size is computed adaptively % per iteration. Default value: mu = 0. % tau,... Variable that controls the momentum in % non-memoryless case. Ignored in memoryless % case. User can insert as value a function handle on tau. % Description given below. Default value: tau = -1. % CGiters,... Maximum iterations for Conjugate-Gradients method. % CGtol,... Tolerance variable for Conjugate-Gradients method. % verbose verbose = 1 prints out execution infromation. % ========================================================================= % DESCRIPTION OF MODE VARIABLE: % solveNewtonb,... If solveNewtonb == 1: Corresponds to solving a % Newton system restricted to a sparse support. % It is implemented via conjugate gradients. If % solveNewtonb == 0: Step size selection as % described in eqs. (12) and (13) in [1]. Default % value: solveNewtonb = 0. For infty memory case, % solveNewtonb = 0. % gradientDescentx,... If gradientDescentx == 1: single gradient % update of x_{i+1} restricted ot its support % with line search. Default value: % gradientDescentx = 1. % solveNewtonx,... If solveNewtonx == 1: Akin to Hard Thresholding % Pursuit (c.f. Simon Foucart, "Hard Thresholding % Pursuit," preprint, 2010). Default vale: % solveNewtonx = 0. % ========================================================================= % DESCRIPTION OF SPECIAL TAU VALUES: % tau = -1,... Tau computed as the minimized of the objective % function: % % <u - Ax_i, Phi(x_i - x_{i-1})> % tau = -----------------------------. % <u - Ax_i, Phi(x_i - x_{i-1})> % % tau = 0,... Follows FISTA weight configuration at each % iteration. For more information, please read "A % Fast Iterative Shrinkage-Thresholding Algorithm % for Linear Inverse Problems", written by A. % Beck and M. Teboulle, SIAM J. Imaging Sciences, % vol. 2, no. 1, 2009. % ========================================================================= % OUTPUT ARGUMENTS: % x_hat N x 1 recovered K-sparse vector. % numiter Number of iterations executed. % time Execution time in seconds. % x_path Keeps a series of computed N x 1 K-sparse vectors % until the end of the iterative process. % ========================================================================= % 01/04/2011, by Anastasios Kyrillidis. anastasios.kyrillidis@epfl.ch, EPFL. % ========================================================================= % cgsolve.m is written by Justin Romberg, Caltech, Oct. 2005. % Email: jrom@acm.caltech.edu % ========================================================================= % This work was supported in part by the European Commission under Grant % MIRG-268398 and DARPA KeCoM program #11-DARPA-1055. VC also would like % to acknowledge Rice University for his Faculty Fellowship. % ========================================================================= x_hat = 0; time = 0; x_path = 0; params.memory = 0; params.tol = 1e-5; params.ALPSiters = 300; params.mode = 0; params.tau = 1/2; params.memory = 0; params.cg_maxiter = 50; params.cg_tol = 1e-8; params.useCG = 0; params.verbose = 0; params.mu = 0; for in_arg = 1:2:length(varargin) if (strcmp(varargin{in_arg}, 'memory')) params.memory = varargin{in_arg+1}; end if (strcmp(varargin{in_arg}, 'mode')) params.mode = varargin{in_arg+1}; end if (strcmp(varargin{in_arg}, 'tolerance')) params.tol = varargin{in_arg+1}; end if (strcmp(varargin{in_arg}, 'ALPSiterations')) params.ALPSiters = varargin{in_arg+1}; end if (strcmp(varargin{in_arg}, 'tau')) params.tau = varargin{in_arg+1}; end if (strcmp(varargin{in_arg}, 'mu')) params.mu = varargin{in_arg+1}; end if (strcmp(varargin{in_arg}, 'useCG')) params.useCG = varargin{in_arg+1}; end if (strcmp(varargin{in_arg}, 'CGiters')) params.cg_maxiter = varargin{in_arg+1}; end if (strcmp(varargin{in_arg}, 'CGtol')) params.cg_tol = varargin{in_arg+1}; end if (strcmp(varargin{in_arg}, 'verbose')) params.verbose = varargin{in_arg+1}; end; end; %% Check input if (ischar(params.memory)) if ~(sum(params.memory == 'infty') == 5) disp('ERROR: Memory variable takes positive integer values or "infty" value.'); numiter = -1; return; end; elseif (params.memory < 0 || ~isinteger(uint8(params.memory))) disp('ERROR: Memory variable takes positive integer values or "infty" value.'); numiter = -1; return; end; if (params.mode ~= 0 && params.mode ~= 1 && params.mode ~= 2 && params.mode ~= 4 && params.mode ~= 5 && params.mode ~= 6) disp('ERROR: Mode variable takes values from range [0,1,2,4,5,6].'); numiter = -1; return; end; if (params.tol < 0 || ~isnumeric(params.tol)) disp('ERROR: tolerance variable must be positive.'); numiter = -1; return; end; if (params.mode == 0 || params.mode == 2) params.useCG = 0; end; y = y(:); M_y = length(y); [M_Phi, tmpArg] = size(Phi); if (params.mode == 4 || params.mode == 5 || params.mode == 6) if (M_Phi < 2*K) disp('WARNING: Newton system may be ill-conditioned... Press any key to continue'); pause; end; end; [params.solveNewtonb, params.gradientDescentx, params.solveNewtonx] = configuration(params.mode); if (M_y ~= M_Phi) error('Inconsistent sampling matrix...'); end; switch params.memory case 0, tic; [x_hat, numiter, x_path] = zero_ALPS(y, Phi, K, params); time = toc; if (params.verbose == 1) str = sprintf('%d-ALPS(%d) time: %s', params.memory, params.mode, num2str(time)); disp(str); str = sprintf('Number of iterations: %d', numiter); disp(str); end; case 1, tic; [x_hat, numiter, x_path] = one_ALPS(y, Phi, K, params); time = toc; if (params.verbose == 1) if (isa(params.tau,'float')) if (params.tau == 0) str = sprintf('%d-ALPS(%d) - fista tau - time: %s', params.memory, params.mode, num2str(time)); elseif (params.tau == -1) str = sprintf('%d-ALPS(%d) - optimized tau - time: %s', params.memory, params.mode, num2str(time)); else str = sprintf('%d-ALPS(%d) - tau = %.3f - time: %s', params.memory, params.mode, params.tau, num2str(time)); end; elseif (isa(params.tau, 'function_handle')) str = sprintf('%d-ALPS(%d) - user derfined tau - time: %s', params.memory, params.mode, num2str(time)); end; disp(str); str = sprintf('Number of iterations: %d', numiter); disp(str); end; case 'infty', tic; [x_hat, numiter, x_path] = infty_ALPS(y, Phi, K, params); time = toc; if (params.verbose == 1) if (isa(params.tau,'float')) if (params.tau == -1) str = sprintf('infty-ALPS(%d) - optimized tau - time: %s', params.mode, num2str(time)); else str = sprintf('infty-ALPS(%d) - tau = %.3f - time: %s', params.mode, params.tau, num2str(time)); end; elseif (isa(params.tau,'function_handle')) str = sprintf('infty-ALPS(%d) - user derfined tau - time: %s', params.mode, num2str(time)); end; disp(str); str = sprintf('Number of iterations: %d', numiter); disp(str); end; otherwise tic; [x_hat, numiter, x_path] = l_ALPS(y, Phi, K, params); time = toc; if (params.verbose == 1) if (isa(params.tau,'float')) if (params.tau == -1) str = sprintf('%d-ALPS(%d) - optimized tau - time: %s', params.memory, params.mode, num2str(time)); else str = sprintf('%d-ALPS(%d) - tau = %.3f - time: %s', params.memory, params.mode, params.tau, num2str(time)); end; elseif (isa(params.tau,'function_handle')) str = sprintf('%d-ALPS(%d) - user derfined tau - time: %s', params.memory, params.mode, num2str(time)); end; disp(str); str = sprintf('Number of iterations: %d', numiter); disp(str); end; end;