Mercurial > hg > smallbox
view toolboxes/alps/ALPSdemo.m @ 239:71128ec3e532 ver_2.0_beta
added documentation file/folder
author | luisf <luis.figueira@eecs.qmul.ac.uk> |
---|---|
date | Wed, 25 Apr 2012 13:06:28 +0100 |
parents | 0de08f68256b |
children |
line wrap: on
line source
% ========================================================================= % Algebraic Pursuit algorithms - Demo % ========================================================================= % Algebraic Pursuit (ALPS) algorithms are accelerated hard thresholding methods % on sparse recovery of linear inverse systems. In particular, let % Phi : M x N real matrix (M < N) % x* : N x 1 K-sparse data vector % n : N x 1 additive noise vector % then, y = Phi x* + n is the undersampled M x 1 measurement vector. ALPS % solve the following minimization problem % minimize ||y - Phi x||^2 subject to x is K-sparse vector. % % Detailed discussion on the algorithm can be found in % [1] "On Accelerated Hard Thresholding Methods for Sparse Approximation", written % by Volkan Cevher, Technical Report, 2011. % ========================================================================= % 01/04/2011, by Anastasios Kyrillidis. anastasios.kyrillidis@epfl.ch, EPFL. % ========================================================================= clear all close all clc addpath ALPS/; % General parameters N = 1000; % Size of sparse vector x M = 300; % Number of measurements K = ceil(M*(0.25)); % Sparsity of x* sigma = 0.000; % Additive noise variance verbose = 1; % Print information % ALPS parameters its = 600; % Maximum number of iterations Ttol= 1e-6; % Convergence tolerance mode = 1; % Binary representation of (SolveNewtonb, GradientDescentx, SolveNewtox) memory = 1; % Memory of IHT method tau = 0; % Momentum term useCG = 0; % Usage of Conjugate gradients method mu = 0; % Step size selection % Please refer to generate_matrix.m and generate_vector.m files m_ensemble = 'Gaussian'; % Measurement matrix ensemble type x_ensemble = 'Gaussian'; % Sparse vector ensemble type % reset(RandStream.getDefaultStream); %% Generate data x = generate_vector(N, K, x_ensemble); Phi = generate_matrix(M, N, m_ensemble); noise = sigma*randn(M,1); y = Phi*x + noise; %% ALPS reconstruction disp('====================================================================='); [x_hat, numiter, time, x_path] = AlgebraicPursuit(y, Phi, K, 'memory', memory, 'mode', mode, 'tolerance', Ttol, 'ALPSiterations', its, 'verbose', verbose, 'tau', tau, 'useCG', useCG, 'mu', mu); if (numiter ~= -1) str = sprintf('Error norm: %f ', norm(x-x_hat)); disp(str); end; %% Plot error per iteration if (numiter ~= -1) error = sqrt(sum(abs(x*ones(1,size(x_path,2))-x_path).^2)); set(0, 'DefaultAxesFontSize', 14); figure; semilogy(error,'LineWidth',3); hold on; grid on; semilogy((norm(noise))*ones(1,its),'m-','LineWidth',1); xlabel('[i]:iteration number') ylabel('||x-x_i||') axis([1 numiter + 5 10^-5 2*10^0]) legend(strcat('Time = [',num2str(time),']'), 'Noise Level'); title(strcat('N = ', num2str(N), ', M = ', num2str(M), ', K = ', num2str(K))); shg; end;