Mercurial > hg > smallbox
view config/SMALL_learn_config.m @ 239:71128ec3e532 ver_2.0_beta
added documentation file/folder
author | luisf <luis.figueira@eecs.qmul.ac.uk> |
---|---|
date | Wed, 25 Apr 2012 13:06:28 +0100 |
parents | 198d4d9cee74 |
children |
line wrap: on
line source
%% Configuration file used in SMALL_learn % % Please DO NOT use this file to change the dictionary learning algorithms in SMALLBox % If you want to change the dictionary learning algorithms % create a copy of this file named 'SMALL_learn_config_local.m' % % Please refer to the documentation for further information % Centre for Digital Music, Queen Mary, University of London. % This file copyright 2009 Ivan Damnjanovic. % % This program is free software; you can redistribute it and/or % modify it under the terms of the GNU General Public License as % published by the Free Software Foundation; either version 2 of the % License, or (at your option) any later version. See the file % COPYING included with this distribution for more information. % %% if strcmpi(DL.toolbox,'KSVD') param=DL.param; param.data=Problem.b; D = eval([DL.name,'(param)']);%, ''t'', 5);']); elseif strcmpi(DL.toolbox,'KSVDS') param=DL.param; param.data=Problem.b; D = eval([DL.name,'(param, ''t'', 5);']); elseif strcmpi(DL.toolbox,'SPAMS') X = Problem.b; param=DL.param; D = eval([DL.name,'(X, param);']); % As some versions of SPAMS does not produce unit norm column % dictionaries, we need to make sure that columns are normalised to % unit lenght. for i = 1: size(D,2) D(:,i)=D(:,i)/norm(D(:,i)); end elseif strcmpi(DL.toolbox,'SMALL') X = Problem.b; param=DL.param; D = eval([DL.name,'(X, param);']); % we need to make sure that columns are normalised to % unit lenght. for i = 1: size(D,2) D(:,i)=D(:,i)/norm(D(:,i)); end elseif strcmpi(DL.toolbox,'TwoStepDL') DL=SMALL_two_step_DL(Problem, DL); % we need to make sure that columns are normalised to % unit lenght. for i = 1: size(DL.D,2) DL.D(:,i)=DL.D(:,i)/norm(DL.D(:,i)); end D = DL.D; elseif strcmpi(DL.toolbox,'MMbox') DL = wrapper_mm_DL(Problem, DL); % we need to make sure that columns are normalised to % unit lenght. for i = 1: size(DL.D,2) DL.D(:,i)=DL.D(:,i)/norm(DL.D(:,i)); end D = DL.D; %% % Please do not make any changes to the 'SMALL_learn_config.m' file % All the changes should be done to your local configuration file % named 'SMALL_learn_config_local.m' % % To introduce new dictionary learning technique put the files in % your Matlab path. Next, unique name <TolboxID> for your toolbox needs % to be defined and also prefferd API for toolbox functions <Preffered_API> % % elseif strcmpi(DL.toolbox,'<ToolboxID>') % % This is an example of API that can be used: % % - get training set from Problem part of structure % % - assign parameters defined in the main program % % X = Problem.b; % param=DL.param; % % % - Evaluate the function (DL.name - defined in the main) with % % parameters given above % % D = eval([DL.name,'(<Preffered_API>);']); else printf('\nToolbox has not been registered. Please change SMALL_learn file.\n'); return end