Mercurial > hg > smallbox
view toolboxes/AudioInpaintingToolbox/Solvers/inpaintFrame_consOMP_Gabor.m @ 147:65fc57f3903c ivand_dev
Merge from the default branch
author | Ivan Damnjanovic lnx <ivan.damnjanovic@eecs.qmul.ac.uk> |
---|---|
date | Tue, 26 Jul 2011 15:55:14 +0100 |
parents | 56d719a5fd31 |
children |
line wrap: on
line source
function y = inpaintFrame_consOMP_Gabor(problemData,param) % Inpainting method based on OMP with a constraint % on the amplitude of the reconstructed samples an optional constraint % on the maximum value of the clipped samples, and using the Gabor dictionary % generated by Gabor_Dictionary.m. The method jointly selects % cosine and sine atoms at the same frequency. % % Usage: y = inpaintFrame_consOMP_Gabor(problemData,param) % % % Inputs: % - problemData.x: observed signal to be inpainted % - problemData.Imiss: Indices of clean samples % - param.D - the dictionary matrix (optional if param.D_fun is set) % - param.D_fun - a function handle that generates the dictionary % matrix param.D if param.D is not given. See Gabor_Dictionary.m % - param.wa - Analysis window % - param.Upper_Limit - if present and non-empty this fiels % indicates that an upper limit constraint is active and its % integer value is such that % % Outputs: % - y: estimated frame % % Note that the CVX library is needed. % % ------------------- % % Audio Inpainting toolbox % Date: June 28, 2011 % By Valentin Emiya, Amir Adler, Michael Elad, Maria Jafari % This code is distributed under the terms of the GNU Public License version 3 (http://www.gnu.org/licenses/gpl.txt). x = problemData.x; IObs = find(~problemData.IMiss); p.N = length(x); E2 = param.OMPerr^2; E2M=E2*length(IObs); wa = param.wa(param.N); % build the dictionary matrix if only the dictionary generation function is given if ~isfield(param,'D') param.D = param.D_fun(param); end % clipping level detection clippingLevelEst = max(abs(x(:)./wa(:))); IMiss = true(length(x),1); IMiss(IObs) = false; IMissPos = find(x>=0 & IMiss); IMissNeg = find(x<0 & IMiss); DictPos=param.D(IMissPos,:); DictNeg=param.D(IMissNeg,:); % Clipping level: take the analysis window into account wa_pos = wa(IMissPos); wa_neg = wa(IMissNeg); b_ineq_pos = wa_pos(:)*clippingLevelEst; b_ineq_neg = -wa_neg(:)*clippingLevelEst; if isfield(param,'Upper_Limit') && ~isempty(param.Upper_Limit) b_ineq_pos_upper_limit = wa_pos(:)*param.Upper_Limit*clippingLevelEst; b_ineq_neg_upper_limit = -wa_neg(:)*param.Upper_Limit*clippingLevelEst; else b_ineq_pos_upper_limit = Inf; b_ineq_neg_upper_limit = -Inf; end %% Dict=param.D(IObs,:); W=1./sqrt(diag(Dict'*Dict)); Dict=Dict*diag(W); Dict1 = Dict(:,1:end/2); Dict2 = Dict(:,end/2+1:end); Dict1Dict2 = sum(Dict1.*Dict2); n12 = 1./(1-Dict1Dict2.^2); xObs=x(IObs); %K = size(param.D,2); residual=xObs; maxNumCoef = param.sparsityDegree; indx = []; % currResNorm2 = sum(residual.^2); currResNorm2 = E2M*2; % set a value above the threshold in order to have/force at least one loop executed j = 0; while currResNorm2>E2M && j < maxNumCoef, j = j+1; proj=residual'*Dict; proj1 = proj(1:end/2); proj2 = proj(end/2+1:end); alpha_j = (proj1-Dict1Dict2.*proj2).*n12; beta_j = (proj2-Dict1Dict2.*proj1).*n12; err_j = sum(abs(repmat(residual,1,size(Dict1,2))-Dict1*sparse(diag(alpha_j))-Dict2*sparse(diag(beta_j))).^2); [dum pos] = min(err_j); indx(end+1)=pos; indx(end+1)=pos+size(Dict1,2); a=pinv(Dict(:,indx(1:2*j)))*xObs; residual=xObs-Dict(:,indx(1:2*j))*a; currResNorm2=sum(residual.^2); end; %% Constrained reestimation of the non-zero coefficients j = length(indx); if isinf(b_ineq_pos_upper_limit) %% CVX code cvx_begin cvx_quiet(true) variable a(j) minimize(norm(Dict(:,indx)*a-xObs)) subject to DictPos(:,indx)*(W(indx).*a) >= b_ineq_pos DictNeg(:,indx)*(W(indx).*a) <= b_ineq_neg cvx_end if cvx_optval>1e3 cvx_begin cvx_quiet(true) variable a(j) minimize(norm(Dict(:,indx)*a-xObs)) cvx_end end else %% CVX code cvx_begin cvx_quiet(true) variable a(j) minimize(norm(Dict(:,indx)*a-xObs)) subject to DictPos(:,indx)*(W(indx).*a) >= b_ineq_pos DictNeg(:,indx)*(W(indx).*a) <= b_ineq_neg DictPos(:,indx)*(W(indx).*a) <= b_ineq_pos_upper_limit DictNeg(:,indx)*(W(indx).*a) >= b_ineq_neg_upper_limit cvx_end if cvx_optval>1e3 cvx_begin cvx_quiet(true) variable a(j) minimize(norm(Dict(:,indx)*a-xObs)) cvx_end end end %% Frame Reconstruction indx(length(a)+1:end) = []; Coeff = sparse(size(param.D,2),1); if (~isempty(indx)) Coeff(indx) = a; Coeff = W.*Coeff; end y = param.D*Coeff; return