Mercurial > hg > smallbox
view examples/AudioInpainting/Audio_Declipping_Example.m @ 139:4bd6856a7128 ivand_dev
ompGabor mex version debuged and tested
author | Ivan <ivan.damnjanovic@eecs.qmul.ac.uk> |
---|---|
date | Thu, 21 Jul 2011 16:37:14 +0100 |
parents | 9207d56c5547 |
children | 31d2864dfdd4 |
line wrap: on
line source
%% Audio Declipping Example % % CHANGE!!! This example is based on the experiment suggested by Professor Pierre % Vandergheynst on the SMALL meeting in Villars. % The idea behind is to use patches from source image as a dictionary in % which we represent target image using matching pursuit algorithm. % Calling Pierre_Problem function to get src image to be used as dictionary % and target image to be represented using MP with 3 patches from source image % % Centre for Digital Music, Queen Mary, University of London. % This file copyright 2011 Ivan Damnjanovic. % % This program is free software; you can redistribute it and/or % modify it under the terms of the GNU General Public License as % published by the Free Software Foundation; either version 2 of the % License, or (at your option) any later version. See the file % COPYING included with this distribution for more information. % %% clear all; % Defining the Problem structure SMALL.Problem = generateAudioDeclippingProblem('male01_8kHz.wav', 0.6, 256, 0.5, @wRect, @wSine, @wRect, @Gabor_Dictionary, 2); % % Show original image and image that is used as a dictionary % figure('Name', 'Original and Dictionary Image'); % % subplot(1,2,1); imagesc(SMALL.Problem.imageTrg/SMALL.Problem.maxval); % title('Original Image');colormap(gray);axis off; axis image; % subplot(1,2,2); imagesc(SMALL.Problem.imageSrc/SMALL.Problem.maxval); % title('Dictionary image:');colormap(gray);axis off; axis image; time=0; error2=0.001^2; coeffFrames = zeros(SMALL.Problem.p, SMALL.Problem.n); for i=1:SMALL.Problem.n idx = find(SMALL.Problem.M(:,i)); if size(idx,1)==SMALL.Problem.m continue end Dict = SMALL.Problem.B(idx,:); wDict = 1./sqrt(diag(Dict'*Dict)); SMALL.Problem.A = Dict*diag(wDict); SMALL.Problem.b1 = SMALL.Problem.b(idx,i); % Defining the parameters sparse representation SMALL.solver=SMALL_init_solver; SMALL.solver.toolbox='ompbox'; SMALL.solver.name='omp2Gabor'; SMALL.solver.param=struct(... 'epsilon', error2*size(idx,1),... 'maxatoms', 128); % Find solution SMALL.solver=SMALL_solve(SMALL.Problem, SMALL.solver); coeffFrames(:,i) = wDict .* SMALL.solver.solution; time = time + SMALL.solver.time; end %% Set reconstruction function SMALL.Problem.reconstruct=@(x) AudioDeclipping_reconstruct(x, SMALL.Problem); reconstructed=SMALL.Problem.reconstruct(coeffFrames); %% Plot results xClipped = SMALL.Problem.clipped; xClean = SMALL.Problem.original; xEst1 = reconstructed.audioAllSamples; xEst2 = reconstructed.audioOnlyClipped; fs = SMALL.Problem.fs; figure hold on plot(xClipped,'r') plot(xClean) plot(xEst2,'--g') plot([1;length(xClipped)],[1;1]*[-1,1]*max(abs(xClipped)),':r') legend('Clipped','True solution','Estimate') % Normalized and save sounds normX = 1.1*max(abs([xEst1(:);xEst2(:);xClean(:)])); L = min([length(xEst2),length(xEst1),length(xClean),length(xEst1),length(xClipped)]); xEst1 = xEst1(1:L)/normX; xEst2 = xEst2(1:L)/normX; xClipped = xClipped(1:L)/normX; xClean = xClean(1:L)/normX; % wavwrite(xEst1,fs,[expParam.destDir 'xEst1.wav']); % wavwrite(xEst2,fs,[expParam.destDir 'xEst2.wav']); % wavwrite(xClipped,fs,[expParam.destDir 'xClipped.wav']); % wavwrite(xClean,fs,[expParam.destDir 'xClean.wav']);