Mercurial > hg > smallbox
view toolboxes/AudioInpaintingToolbox/Solvers/inpaintFrame_janssenInterpolation.m @ 152:485747bf39e0 ivand_dev
Two step dictonary learning - Integration of the code for dictionary update and dictionary decorrelation from Boris Mailhe
author | Ivan Damnjanovic lnx <ivan.damnjanovic@eecs.qmul.ac.uk> |
---|---|
date | Thu, 28 Jul 2011 15:49:32 +0100 |
parents | 56d719a5fd31 |
children |
line wrap: on
line source
function y = inpaintFrame_janssenInterpolation(problemData,param) % Frame-level inpainting method based on the linear prediction by % Janssen. % % Usage: xEst = inpaintFrame_janssenInterpolation(problemData,param) % % % Inputs: % - problemData.x - observed signal to be inpainted % - problemData.Imiss - Indices of clean samples % - param.p - Order of the autoregressive model used in % for linear prediction % % Outputs: % - y: estimated frame % % References: % % ------------------- % % Audio Inpainting toolbox % Date: June 28, 2011 % By Valentin Emiya, Amir Adler, Maria Jafari % This code is distributed under the terms of the GNU Public License version 3 (http://www.gnu.org/licenses/gpl.txt). s = problemData.x; N = length(s); Im = find(problemData.IMiss); IObs = find(~problemData.IMiss); M = length(Im); Im = sort(Im); Im = Im(:); % Im: indexes of missing samples s(Im) = 0; if nargin<2 || ~isfield(param,'p') p = min(3*M+2,round(N/3)); else p = param.p; end if nargin<2 || ~isfield(param,'GR') param.GR = false; end if nargin<2 || ~isfield(param,'NIt') NIt = 100; else NIt = param.NIt; end IAA = abs(Im*ones(1,N)-ones(M,1)*(1:N)); IAA1 = IAA<=p; AA = zeros(size(IAA)); if param.GR figure; hold on end for k=1:NIt % Re-estimation of LPC aEst = lpc(s,p).'; % Re-estimation of the missing samples b = aEst.'*hankel(aEst.',[aEst(end),zeros(1,p)]); AA(IAA1) = b(IAA(IAA1)+1); % xEst = -inv(AA(:,Im))*AA(:,IObs)*s(IObs); % use Chol to invert matrix [R flagErr] = chol(AA(:,Im)); if flagErr % xEst = - AA(:,Im)\(AA(:,IObs)*s(IObs)); xEst = -inv(AA(:,Im))*AA(:,IObs)*s(IObs); else xEst = -R\(R'\(AA(:,IObs)*s(IObs))); end s(Im) = xEst; if param.GR e = filter(aEst,1,s); plot(k,10*log10(mean(e(p+1:end).^2)),'o') end end y = s; return