Mercurial > hg > smallbox
view toolboxes/AudioInpaintingToolbox/Problems/generateMissingGroupsProblem.m @ 152:485747bf39e0 ivand_dev
Two step dictonary learning - Integration of the code for dictionary update and dictionary decorrelation from Boris Mailhe
author | Ivan Damnjanovic lnx <ivan.damnjanovic@eecs.qmul.ac.uk> |
---|---|
date | Thu, 28 Jul 2011 15:49:32 +0100 |
parents | 56d719a5fd31 |
children |
line wrap: on
line source
function [problemData, solutionData] = generateMissingGroupsProblem(xFrame,problemParameters) % % % Usage: % % % Inputs: % - % - % - % - % - % - % - % - % % Outputs: % - % - % - % - % % Note that the CVX library is needed. % % ------------------- % % Audio Inpainting toolbox % Date: June 28, 2011 % By Valentin Emiya, Amir Adler, Maria Jafari % This code is distributed under the terms of the GNU Public License version 3 (http://www.gnu.org/licenses/gpl.txt). % Generate a clipping problem: normalize and clip a signal. % % Usage: % [problemData, solutionData] = makeClippedSignal(x,clippingLevel,GR) % % Inputs: % - x: input signal (may be multichannel) % - clippingLevel: clipping level, between 0 and 1 % - GR (default: false): flag to generate an optional graphical display % % Outputs: % - problemData.xClipped: clipped signal % - problemData.IClipped: boolean vector (same size as problemData.xClipped) that indexes clipped % samples % - problemData.clipSizes: size of the clipped segments (not necessary % for solving the problem) % - solutionData.xClean: clean signal (input signal after normalization % % Note that the input signal is normalized to 0.9999 (-1 is not allowed in % wav files) to provide problemData.xClipped and solutionData.xClean. %function [xFrame,xFrameObs,Imiss] = aux_getFrame(xFrame,holeSize,NHoles)%,param,frameParam,kFrame) N = length(xFrame); % frame length % Load frame % xFrame = wavread(param.wavFiles{frameParam.kFrameFile(kFrame)},frameParam.kFrameBegin(kFrame)+[0,N-1]); % Window %xFrame = xFrame.*param.wa(N).'; % Normalize xFrame = xFrame/max(abs(xFrame)); % Build random measurement matrix with NHoles of length holeSize [M IMiss] = makeRandomMeasurementMatrix(N,problemParameters.NHoles,problemParameters.holeSize); xFrameObs = xFrame; xFrameObs(IMiss) = 0; problemData.x = xFrameObs; problemData.IMiss = IMiss; solutionData.xClean = xFrame; return function [M Im] = makeRandomMeasurementMatrix(N,NMissingBlocks,blockSize) % [M Im] = makeRandomMeasurementMatrix(N,NMissingBlocks,blockSize) % Create a random measurement matrix M where NMissingBlocks blocks with % size blockSize each are randomly inserted. The boolean vector Im % indicates the location of the NMissingBlocks*blockSize missing % samples. % If the number of missing samples is large, there may be very few solutions % so that after a few failing attempts, the results is generated in a deterministic % way (groups separated by one sample). This happens for example when the number of % missing samples is close to half the frame length, for isolated samples (blockSize=1). nTry = 1; while true try Im = false(N,1); possibleStart = 1:N-blockSize+1; for k=1:NMissingBlocks if isempty(possibleStart) error('makeRandomMeasurementMatrix:tooMuchMissingSamples',... 'Too much missing segments'); end I = ceil(rand*(length(possibleStart)-1)); I = possibleStart(I); Im(I+(0:blockSize-1)) = true; possibleStart(possibleStart>=I-blockSize & possibleStart<=I+blockSize) = []; end break catch fprintf('makeRandomMeasurementMatrix:retry (%d)\n',nTry); nTry = nTry+1; if nTry>10 Im = [true(blockSize,NMissingBlocks);false(1,NMissingBlocks)]; Im = Im(:); while length(Im)<N N0 = sum(~Im); I0 = find(~Im,randi(N0),'first'); I0 = I0(end); Im = [Im(1:I0);false;Im(I0+1:end)]; end Im = circshift(Im,randi(N)); break; end end end M = eye(N); M(Im,:) = []; return