Mercurial > hg > smallbox
view toolboxes/alps/wrapper_ALPS_toolbox.m @ 219:4337e28183f1 luisf_dev
Modified help comments of wrapper_mm_DL.m, wrapper_mm_solver.m, SMALL_rlsdla.m & SMALL_AudioDenoise_DL_test_KSVDvsSPAMS.m. Moved wrapper_ALPS_toolbox from toolboxes to toolboxes/alps and added some extra help comments.
author | Aris Gretsistas <aris.gretsistas@elec.qmul.ac.uk> |
---|---|
date | Fri, 23 Mar 2012 20:48:25 +0000 |
parents | |
children |
line wrap: on
line source
function [x , numiter, time, x_path] = wrapper_ALPS_toolbox(b, A, param) %% SMALL wrapper for ALPS toolbox % % Function gets as input % b - measurement vector % A - dictionary % K - desired sparsity level % param - structure containing additional parameters. These are: % - memory Memory (momentum) of proposed algorithm. % Possible values are 0,1,'infty' for memoryless, % one memory and infinity memory ALPS, % respectively. Default value: memory = 0. % - tol Early stopping tolerance. Default value: tol = % 1-e5. % - ALPSiters Maximum number of algorithm iterations. Default % value: 300. % - mod According to [1], possible values are % [0,1,2,4,5,6]. This value comes from the binary % representation of the parameters: % (solveNewtob, gradientDescentx, solveNewtonx), % which are explained next. Default value = 0. % - mu Variable that controls the step size selection. % When mu = 0, step size is computed adaptively % per iteration. Default value: mu = 0. % - tau Variable that controls the momentum in % non-memoryless case. Ignored in memoryless % case. User can insert as value a function handle on tau. % Description given below. Default value: tau = -1. % - CGiters Maximum iterations for Conjugate-Gradients method. % - CGtol Tolerance variable for Conjugate-Gradients method. % - verbose verbose = 1 prints out execution infromation. % Output: % x - sparse solution % numiter - number of iterations % time - time needed to solve the problem# % x_path - matrix containing x after every iteration % % For more details see AlgebraicPursuit.m. % % Centre for Digital Music, Queen Mary, University of London. % This file copyright 2011 Ivan Damnjanovic. % % This program is free software; you can redistribute it and/or % modify it under the terms of the GNU General Public License as % published by the Free Software Foundation; either version 2 of the % License, or (at your option) any later version. See the file % COPYING included with this distribution for more information. % %% if isfield(param, 'sparsity') sparsity = param.sparsity; else printf('\nAlebraic Pursuit algorithms require desired sparsity level.\n("sparsity" field in solver parameters structure)\n '); return end if isfield(param, 'memory') memory = param.memory; else memory = 0; end if isfield(param, 'mode') mode = param.mode; else mode = 0; end if isfield(param, 'tolerance') tolerance = param.tolerance; else tolerance = 1e-5; end if isfield(param, 'iternum') iternum = param.iternum; else iternum = 300; end if isfield(param, 'verbose') verbose = param.verbose; else verbose = 0; end if isfield(param, 'tau') tau = param.tau; else tau = 1/2; end if isfield(param, 'useCG') useCG = param.useCG; else useCG = 0; end if isfield(param, 'mu') mu = param.mu; else mu = 0; end training_size = size(b,2); x=zeros(size(A,2),training_size); for i = 1:training_size [x(:,i), numiter, time, x_path] = AlgebraicPursuit(b(:,i), A, sparsity, 'memory', memory,... 'mode', mode, 'tolerance', tolerance, 'ALPSiterations', iternum, ... 'verbose', verbose, 'tau', tau, 'useCG', useCG, 'mu', mu); end