Mercurial > hg > smallbox
view util/SMALL_ImgDeNoiseResult.m @ 8:33850553b702
(none)
author | idamnjanovic |
---|---|
date | Mon, 22 Mar 2010 10:56:54 +0000 |
parents | |
children | fc395272d53e |
line wrap: on
line source
function SMALL_ImgDeNoiseResult(SMALL) % Ivan Damnjanovic 2010 % Function gets as input SMALL structure and plots Image Denoise % results: Original Image, Noisy Image and for learned dictionaries and % denoised images figure('Name', sprintf('Image %s (training set size- %d, sigma - %d)',SMALL.Problem.name, SMALL.Problem.n, SMALL.Problem.sigma)); m=size(SMALL.solver,2)+1; maxval=SMALL.Problem.maxval; im=SMALL.Problem.Original; imnoise=SMALL.Problem.Noisy; subplot(2, m, 1); imshow(im/maxval); title('Original image'); subplot(2,m,m+1); imshow(imnoise/maxval); title(sprintf('Noisy image, PSNR = %.2fdB', 20*log10(maxval * sqrt(numel(im)) / norm(im(:)-imnoise(:))) )); for i=2:m params=SMALL.solver(i-1).param; subplot(2, m, i); imshow(SMALL.solver(i-1).reconstructed.Image/maxval); title(sprintf('%s Denoised image, PSNR: %.2f dB in %.2f s',... SMALL.DL(i-1).name, SMALL.solver(i-1).reconstructed.psnr, SMALL.solver(i-1).time )); if strcmpi(SMALL.DL(i-1).name,'ksvds') D = kron(SMALL.Problem.basedict{2},SMALL.Problem.basedict{1})*SMALL.DL(i-1).D; else D = SMALL.DL(i-1).D; end dictimg = showdict(D,params.blocksize,... round(sqrt(size(D,2))),round(sqrt(size(D,2))),'lines','highcontrast'); subplot(2,m,m+i);imshow(imresize(dictimg,2,'nearest')); title(sprintf('%s dictionary in %.2f s',... SMALL.DL(i-1).name, SMALL.DL(i-1).time)); end