Mercurial > hg > smallbox
view examples/MajorizationMinimization tests/SMALL_AudioDenoise_DL_test_KSVDvsSPAMS.m @ 188:2f5ce7c8792a danieleb
removed check for wLength as not necessary.
author | daniele@danieleb.com |
---|---|
date | Wed, 15 Feb 2012 11:02:45 +0100 |
parents | f42aa8bcb82f |
children | 4337e28183f1 |
line wrap: on
line source
%% DICTIONARY LEARNING FOR AUDIO DENOISING % This file contains an example of how SMALLbox can be used to test different % dictionary learning techniques in Audio Denoising problem. % It calls generateAudioDenoiseProblem that will let you to choose audio file, % add noise and use noisy audio to generate training set for dictionary % learning. % % % Centre for Digital Music, Queen Mary, University of London. % This file copyright 2011 Ivan Damnjanovic. % % This program is free software; you can redistribute it and/or % modify it under the terms of the GNU General Public License as % published by the Free Software Foundation; either version 2 of the % License, or (at your option) any later version. See the file % COPYING included with this distribution for more information. % %% clear; % Defining Audio Denoising Problem as Dictionary Learning % Problem SMALL.Problem = generateAudioDenoiseProblem('male01_8kHz',0.1,512,1/128,'','','',4); %% % Initialising solver structure % Setting solver structure fields (toolbox, name, param, solution, % reconstructed and time) to zero values SMALL.solver(1)=SMALL_init_solver('MMbox', 'mm1', '', 1); % Defining the parameters needed for image denoising SMALL.solver(1).param=struct(... 'lambda', 0.2,... 'epsilon', 3*10^-4,... 'iternum',10); % Initialising Dictionary structure % Setting Dictionary structure fields (toolbox, name, param, D and time) % to zero values SMALL.DL(1)=SMALL_init_DL('MMbox', 'MM_cn', '', 1); % Defining the parameters for MOD % In this example we are learning 256 atoms in 20 iterations, so that % every patch in the training set can be represented with target error in % L2-norm (EData) % Type help ksvd in MATLAB prompt for more options. SMALL.DL(1).param=struct(... 'solver', SMALL.solver(1),... 'initdict', SMALL.Problem.initdict,... 'dictsize', SMALL.Problem.p,... 'iternum', 20,... 'iterDictUpdate', 10,... 'epsDictUpdate', 10^-7,... 'cvset',0,... 'show_dict', 0); % Learn the dictionary SMALL.DL(1) = SMALL_learn(SMALL.Problem, SMALL.DL(1)); % Set SMALL.Problem.A dictionary % (backward compatiblity with SPARCO: solver structure communicate % only with Problem structure, ie no direct communication between DL and % solver structures) SMALL.Problem.A = SMALL.DL(1).D; SMALL.Problem.reconstruct = @(x) AudioDenoise_reconstruct(x, SMALL.Problem); % Denoising the image - find the sparse solution in the learned % dictionary for all patches in the image and the end it uses % reconstruction function to reconstruct the patches and put them into a % denoised image SMALL.solver(1)=SMALL_solve(SMALL.Problem, SMALL.solver(1)); %% %% % % sparse coding using SPAMS online dictionary learning % SMALL.DL(2)=SMALL_init_DL(); SMALL.DL(2).toolbox = 'SPAMS'; SMALL.DL(2).name = 'mexTrainDL'; SMALL.DL(2).param=struct('D', SMALL.Problem.initdict, 'K', SMALL.Problem.p, 'lambda', 0.2, 'iter', 200, 'mode', 3, 'modeD', 0); SMALL.DL(2) = SMALL_learn(SMALL.Problem, SMALL.DL(2)); % Defining Reconstruction function SMALL.Problem.A = SMALL.DL(2).D; %% % Initialising solver structure % Setting toolbox, name, param, solution, reconstructed and time to zero values SMALL.solver(2)=SMALL_init_solver; % Defining the parameters needed for sparse representation SMALL.solver(2).toolbox='ompbox'; SMALL.solver(2).name='omp2'; SMALL.solver(2).param=struct(... 'epsilon',0.2,... 'maxatoms', 128); % Represent Training set in the learned dictionary SMALL.solver(2)=SMALL_solve(SMALL.Problem, SMALL.solver(2)); %% % Plot results and save midi files % show results % SMALL_AudioDeNoiseResult(SMALL);