Mercurial > hg > smallbox
view toolboxes/alps/ALPS/one_ALPS.m @ 169:290cca7d3469 danieleb
Added dictionary decorrelation functions and test script for ICASSP paper.
author | Daniele Barchiesi <daniele.barchiesi@eecs.qmul.ac.uk> |
---|---|
date | Thu, 29 Sep 2011 09:46:52 +0100 |
parents | 0de08f68256b |
children |
line wrap: on
line source
function [x_hat, numiter, x_path] = one_ALPS(y, Phi, K, params) % ========================================================================= % 1-ALPS(#) algorithm - Beta Version % ========================================================================= % Algebraic Pursuit (ALPS) algorithm with 1-memory acceleration. % % Detailed discussion on the algorithm can be found in % [1] "On Accelerated Hard Thresholding Methods for Sparse Approximation", written % by Volkan Cevher, Technical Report, 2011. % ========================================================================= % INPUT ARGUMENTS: % y M x 1 undersampled measurement vector. % Phi M x N regression matrix. % K Sparsity of underlying vector x* or desired % sparsity of solution. % params Structure of parameters. These are: % % tol,... Early stopping tolerance. Default value: tol = % 1-e5. % ALPSiters,... Maximum number of algorithm iterations. Default % value: 300. % solveNewtonb,... If solveNewtonb == 1: Corresponds to solving a % Newton system restricted to a sparse support. % It is implemented via conjugate gradients. % If solveNewtonb == 0: Step size selection as described % in eqs. (12) and (13) in [1]. % Default value: solveNewtonb = 0. % gradientDescentx,... If gradientDescentx == 1: single gradient % update of x_{i+1} restricted ot its support with % line search. Default value: gradientDescentx = % 1. % solveNewtonx,... If solveNewtonx == 1: Akin to Hard Thresholding Pursuit % (c.f. Simon Foucart, "Hard Thresholding Pursuit," % preprint, 2010). Default vale: solveNewtonx = 0. % tau,... Variable that controls the momentum in % non-memoryless case. Ignored in memoryless % case. Default value: tau = 1/2. % Special cases: % - tau = 0: momentum step size selection is % driven by the following formulas: % a_1 = 1; % a_{i+1} = (1+\sqrt(1+4a_i^2)/2; % tau = (a_i - 1)/(a_{i+1}); % described in [2] "A fast iterative % shrinkage-thresholding algorithm for linear % inverse problems", Beck A., and Teboulle M. % - tau = -1: momentum step size is automatically % optimized in every step. % - tau as a function handle: user defined % behavior of tau momentum term. % mu,... Variable that controls the step size selection. % When mu = 0, step size is computed adaptively % per iteration. Default value: mu = 0. % cg_maxiter,... Maximum iterations for Conjugate-Gradients method. % cg_tol Tolerance variable for Conjugate-Gradients method. % ========================================================================= % OUTPUT ARGUMENTS: % x_hat N x 1 recovered K-sparse vector. % numiter Number of iterations executed. % x_path Keeps a series of computed N x 1 K-sparse vectors % until the end of the iterative process. % ========================================================================= % 01/04/2011, by Anastasios Kyrillidis. anastasios.kyrillidis@epfl.ch, EPFL. % ========================================================================= % cgsolve.m is written by Justin Romberg, Caltech, Oct. 2005. % Email: jrom@acm.caltech.edu % ========================================================================= % This work was supported in part by the European Commission under Grant % MIRG-268398 and DARPA KeCoM program #11-DARPA-1055. VC also would like % to acknowledge Rice University for his Faculty Fellowship. % ========================================================================= [M,N] = size(Phi); %% Initialize transpose of measurement matrix Phi_t = Phi'; %% Initialize to zero vector x_cur = zeros(N,1); y_cur = zeros(N,1); Phi_x_cur = zeros(M,1); Y_i = []; x_path = zeros(N, params.ALPSiters); %% CG params if (params.solveNewtonx == 1 || params.solveNewtonb == 1) cg_verbose = 0; cg_A = Phi_t*Phi; cg_b = Phi_t*y; end; %% Determine momentum step size selection strategy fista = 0; optimizeTau = 0; a_prev = 1; function_tau = 0; if (isa(params.tau,'float')) function_tau = 0; if (params.tau == 0) fista = 1; optimizeTau = 0; elseif (params.tau == -1) optimizeTau = 1; fista = 0; end; elseif (isa(params.tau, 'function_handle')) function_tau = 1; end; %% Determine step size selection strategy function_mu = 0; adaptive_mu = 0; if (isa(params.mu,'float')) function_mu = 0; if (params.mu == 0) adaptive_mu = 1; else adaptive_mu = 0; end; elseif (isa(params.mu,'function_handle')) function_mu = 1; end; %% Help variables complementary_Yi = ones(N,1); i = 1; %% 1-ALPS(#) while (i <= params.ALPSiters) x_path(:,i) = x_cur; x_prev = x_cur; % Compute the residual if (i == 1) res = y; % Compute the derivative der = Phi_t*res; else % Compute the derivative if (optimizeTau) res = y - Phi_x_cur - params.tau*Phi_diff; else res = y - Phi(:,Y_i)*y_cur(Y_i); end; der = Phi_t*res; end; Phi_x_prev = Phi_x_cur; % Determine S_i set via eq. (11) (change of variable from x_i to y_i) complementary_Yi(Y_i) = 0; [tmpArg, ind_der] = sort(abs(der).*complementary_Yi, 'descend'); complementary_Yi(Y_i) = 1; S_i = [Y_i; ind_der(1:K)]; ider = der(S_i); if (params.solveNewtonb == 1) % Compute least squares solution of the system A*y = (A*A)x using CG if (params.useCG == 1) [b, tmpArg, tmpArg] = cgsolve(cg_A(S_i, S_i), cg_b(S_i), params.cg_tol, params.cg_maxiter, cg_verbose); else b = cg_A(S_i,S_i)\cg_b(S_i); end; else % Step size selection via eq. (12) and eq. (13) (change of variable from x_i to y_i) if (adaptive_mu) Pder = Phi(:,S_i)*ider; mu_bar = ider'*ider/(Pder'*Pder); b = y_cur(S_i) + (mu_bar)*ider; elseif (function_mu) b = y_cur(S_i) + params.mu(i)*ider; else b = y_cur(S_i) + params.mu*ider; end; end; % Hard-threshold b and compute X_{i+1} [tmpArg, ind_b] = sort(abs(b), 'descend'); x_cur = zeros(N,1); x_cur(S_i(ind_b(1:K))) = b(ind_b(1:K)); X_i = S_i(ind_b(1:K)); if (params.gradientDescentx == 1) % Calculate gradient of estimated vector x_cur Phi_x_cur = Phi(:,X_i)*x_cur(X_i); res = y - Phi_x_cur; der = Phi_t*res; ider = der(X_i); if (adaptive_mu) Pder = Phi(:,X_i)*ider; mu_bar = ider'*ider/(Pder'*Pder); x_cur(X_i) = x_cur(X_i) + mu_bar*ider; elseif (function_mu) x_cur(X_i) = x_cur(X_i) + params.mu(i)*ider; else x_cur(X_i) = x_cur(X_i) + params.mu*ider; end; elseif (params.solveNewtonx == 1) % Similar to HTP if (params.useCG == 1) [v, tmpArg, tmpArg] = cgsolve(cg_A(X_i, X_i), cg_b(X_i), params.cg_tol, params.cg_maxiter, cg_verbose); else v = cg_A(X_i, X_i)\cg_b(X_i); end; x_cur(X_i) = v; end; if (~function_tau) % If tau is not a function handle... if (fista) % Fista configuration a_cur = (1 + sqrt(1 + 4*a_prev^2))/2; params.tau = (a_prev - 1)/a_cur; a_prev = a_cur; elseif (optimizeTau) % Compute optimized tau % tau = argmin ||u - Phi*y_{i+1}|| % = <res, Phi*(x_cur - x_prev)>/||Phi*(x_cur - x_prev)||^2 Phi_x_cur = Phi(:,X_i)*x_cur(X_i); res = y - Phi_x_cur; if (i == 1) Phi_diff = Phi_x_cur; else Phi_diff = Phi_x_cur - Phi_x_prev; end; params.tau = res'*Phi_diff/(Phi_diff'*Phi_diff); end; y_cur = x_cur + params.tau*(x_cur - x_prev); Y_i = find(ne(y_cur, 0)); else y_cur = x_cur + params.tau(i)*(x_cur - x_prev); Y_i = find(ne(y_cur, 0)); end; % Test stopping criterion if (i > 1) && (norm(x_cur - x_prev) < params.tol*norm(x_cur)) break; end; i = i + 1; end; x_hat = x_cur; numiter= i; if (i > params.ALPSiters) x_path = x_path(:,1:numiter-1); else x_path = x_path(:,1:numiter); end;