Mercurial > hg > smallbox
view toolboxes/AudioInpaintingToolbox/Solvers/inpaintFrame_OMP_Gabor.m @ 180:28b20fd46ba7 danieleb
debugged
author | Daniele Barchiesi <daniele.barchiesi@eecs.qmul.ac.uk> |
---|---|
date | Thu, 17 Nov 2011 13:01:55 +0000 |
parents | 56d719a5fd31 |
children |
line wrap: on
line source
function [y , Coeff]= inpaintFrame_OMP_Gabor(problemData,param) % Inpainting method based on OMP using the Gabor dictionary % generated by Gabor_Dictionary.m. The method jointly selects % cosine and sine atoms at the same frequency % % Usage: y = inpaintFrame_OMP_Gabor(problemData,param) % % % Inputs: % - problemData.x: observed signal to be inpainted % - problemData.Imiss: Indices of clean samples % - param.D - the dictionary matrix (optional if param.D_fun is set) % - param.D_fun - a function handle that generates the dictionary % matrix param.D if param.D is not given. See Gabor_Dictionary.m % - param.wa - Analysis window % % Outputs: % - y: estimated frame % % % ------------------- % % Audio Inpainting toolbox % Date: June 28, 2011 % By Valentin Emiya, Amir Adler, Michael Elad, Maria Jafari % This code is distributed under the terms of the GNU Public License version 3 (http://www.gnu.org/licenses/gpl.txt). % ======================================================== % To do next: use a faster implementation of OMP %% Load data and parameters x = problemData.x; IObs = find(~problemData.IMiss); p.N = length(x); E2 = param.OMPerr^2; E2M=E2*length(IObs); wa = param.wa(param.N); %% Build and normalized dictionary % build the dictionary matrix if only the dictionary generation function is given if ~isfield(param,'D') param.D = param.D_fun(param); end Dict=param.D(IObs,:); W=1./sqrt(diag(Dict'*Dict)); Dict=Dict*diag(W); Dict1 = Dict(:,1:end/2); Dict2 = Dict(:,end/2+1:end); Dict1Dict2 = sum(Dict1.*Dict2); n12 = 1./(1-Dict1Dict2.^2); xObs=x(IObs); %% OMP iterations residual=xObs; maxNumCoef = param.sparsityDegree; indx = []; % currResNorm2 = sum(residual.^2); currResNorm2 = E2M*2; % set a value above the threshold in order to have/force at least one loop executed j = 0; while currResNorm2>E2M && j < maxNumCoef, j = j+1; proj=residual'*Dict; proj1 = proj(1:end/2); proj2 = proj(end/2+1:end); alpha_j = (proj1-Dict1Dict2.*proj2).*n12; beta_j = (proj2-Dict1Dict2.*proj1).*n12; err_j = sum(abs(repmat(residual,1,size(Dict1,2))-Dict1*sparse(diag(alpha_j))-Dict2*sparse(diag(beta_j))).^2); [dum pos] = min(err_j); indx(end+1)=pos; indx(end+1)=pos+size(Dict1,2); a=pinv(Dict(:,indx(1:2*j)))*xObs; residual=xObs-Dict(:,indx(1:2*j))*a; currResNorm2=sum(residual.^2); end; %% Frame Reconstruction indx(length(a)+1:end) = []; Coeff = sparse(size(param.D,2),1); if (~isempty(indx)) Coeff(indx) = a; Coeff = W.*Coeff; end y = param.D*Coeff; return