Mercurial > hg > smallbox
view examples/Automatic Music Transcription/SMALL_AMT_SPAMS_test.m @ 59:23f9dd7b9d78
(none)
author | idamnjanovic |
---|---|
date | Mon, 14 Mar 2011 17:25:38 +0000 |
parents | cbf3521c25eb |
children | dab78a3598b6 |
line wrap: on
line source
%% DICTIONARY LEARNING FOR AUTOMATIC MUSIC TRANSCRIPTION EXAMPLE 1 % % Centre for Digital Music, Queen Mary, University of London. % This file copyright 2010 Ivan Damnjanovic. % % This program is free software; you can redistribute it and/or % modify it under the terms of the GNU General Public License as % published by the Free Software Foundation; either version 2 of the % License, or (at your option) any later version. See the file % COPYING included with this distribution for more information. % % This file contains an example of how SMALLbox can be used to test diferent % dictionary learning techniques in Automatic Music Transcription problem. % It calls generateAMT_Learning_Problem that will let you to choose midi, % wave or mat file to be transcribe. If file is midi it will be first % converted to wave and original midi file will be used for comparison with % results of dictionary learning and reconstruction. % The function will generarte the Problem structure that is used to learn % Problem.p notes spectrograms from training set Problem.b using % dictionary learning technique defined in DL structure. % %% clear; % Defining Automatic Transcription of Piano tune as Dictionary Learning % Problem SMALL.Problem = generateAMT_Learning_Problem(); TPmax=0; %% for i=1:10 %% % Solving AMT problem using non-negative sparse coding with % SPAMS online dictionary learning (Julien Mairal 2009) % % Initialising Dictionary structure % Setting Dictionary structure fields (toolbox, name, param, D and time) % to zero values SMALL.DL(i)=SMALL_init_DL(); % Defining fields needed for dictionary learning SMALL.DL(i).toolbox = 'SPAMS'; SMALL.DL(i).name = 'mexTrainDL'; % We test SPAMS for ten different values of parameter lambda % Type 'help mexTrainDL in MATLAB prompt for explanation of parameters. lambda(i)=1.4+0.2*i; SMALL.DL(i).param=struct(... 'K', SMALL.Problem.p,... 'lambda', lambda(i),... 'iter', 300,... 'posAlpha', 1,... 'posD', 1,... 'whiten', 0,... 'mode', 2); % Learn the dictionary SMALL.DL(i) = SMALL_learn(SMALL.Problem, SMALL.DL(i)); % Set SMALL.Problem.A dictionary and reconstruction function % (backward compatiblity with SPARCO: solver structure communicate % only with Problem structure, ie no direct communication between DL and % solver structures) SMALL.Problem.A = SMALL.DL(i).D; SMALL.Problem.reconstruct=@(x) SMALL_midiGenerate(x, SMALL.Problem); %% % Initialising solver structure % Setting solver structure fields (toolbox, name, param, solution, % reconstructed and time) to zero values % As an example, SPAMS (Julien Mairal 2009) implementation of LARS % algorithm is used for representation of training set in the learned % dictionary. SMALL.solver(1)=SMALL_init_solver; % Defining the parameters needed for sparse representation SMALL.solver(1).toolbox='SPAMS'; SMALL.solver(1).name='mexLasso'; % Here we use mexLasso mode=2, with lambda=3, lambda2=0 and positivity % constrain (type 'help mexLasso' for more information about modes): % % min_{alpha_i} (1/2)||x_i-Dalpha_i||_2^2 + lambda||alpha_i||_1 + (1/2)lambda2||alpha_i||_2^2 SMALL.solver(1).param=struct(... 'lambda', 3,... 'pos', 1,... 'mode', 2); % Call SMALL_soolve to represent the signal in the given dictionary. % As a final command SMALL_solve will call above defined reconstruction % function to reconstruct the training set (Problem.b) in the learned % dictionary (Problem.A) SMALL.solver(1)=SMALL_solve(SMALL.Problem, SMALL.solver(1)); %% % Analysis of the result of automatic music transcription. If groundtruth % exists, we can compare transcribed notes and original and get usual % True Positives, False Positives and False Negatives measures. AMT_res(i) = AMT_analysis(SMALL.Problem, SMALL.solver(1)); if AMT_res(i).TP>TPmax TPmax=AMT_res(i).TP; BLmidi=SMALL.solver(1).reconstructed.midi; writemidi(SMALL.solver(1).reconstructed.midi, ['testL',i,'.mid']); max=i; end end %end of for loop %% % Plot results and save midi files figAMTbest=SMALL_AMT_plot(SMALL, AMT_res(max)); resFig=figure('Name', 'Automatic Music Transcription SPAMS lambda TEST'); subplot (3,1,1); plot(lambda(:), [AMT_res(:).TP], 'ro-'); title('True Positives vs lambda'); subplot (3,1,2); plot(lambda(:), [AMT_res(:).FN], 'ro-'); title('False Negatives vs lambda'); subplot (3,1,3); plot(lambda(:), [AMT_res(:).FP], 'ro-'); title('False Positives vs lambda'); FS=filesep; [pathstr1, name, ext, versn] = fileparts(which('SMALLboxSetup.m')); cd([pathstr1,FS,'results']); [filename,pathname] = uiputfile({' *.mid;' },'Save midi'); if filename~=0 writemidi(BLmidi, [pathname,FS,filename]);end [filename,pathname] = uiputfile({' *.fig;' },'Save figure TP/FN/FP vs lambda'); if filename~=0 saveas(resFig, [pathname,FS,filename]);end [filename,pathname] = uiputfile({' *.fig;' },'Save BEST AMT figure'); if filename~=0 saveas(figAMTbest, [pathname,FS,filename]);end