Mercurial > hg > smallbox
view Problems/Cardiac_MRI_problem.m @ 51:217a33ac374e
(none)
author | idamnjanovic |
---|---|
date | Mon, 14 Mar 2011 16:52:27 +0000 |
parents | 2953097411d4 |
children |
line wrap: on
line source
function data = Cardiac_MRI_Problem(varargin) % CHANGE!!!!PROB503 Shepp-Logan phantom, partial Fourier with sample mask, % complex domain, total variation. % % PROB503 creates a problem structure. The generated signal will % consist of a N = 256 by N Shepp-Logan phantom. The signal is % sampled at random locations in frequency domain generated % according to a probability density function. % % The following optional arguments are supported: % % PROB503('n',N,flags) is the same as above, but with a % phantom of size N by N. The 'noseed' flag can be specified to % suppress initialization of the random number generators. Both % the parameter pair and flags can be omitted. % % Examples: % P = prob503; % Creates the default 503 problem. % % References: % % [LustDonoPaul:2007] M. Lustig, D.L. Donoho and J.M. Pauly, % Sparse MRI: The application of compressed sensing for rapid MR % imaging, Submitted to Magnetic Resonance in Medicine, 2007. % % [sparsemri] M. Lustig, SparseMRI, % http://www.stanford.edu/~mlustig/SparseMRI.html % % See also GENERATEPROBLEM. % %MATLAB SPARCO Toolbox. % Copyright 2008, Ewout van den Berg and Michael P. Friedlander % http://www.cs.ubc.ca/labs/scl/sparco % $Id: prob503.m 1040 2008-06-26 20:29:02Z ewout78 $ % Parse parameters and set problem name [opts,varg] = parseDefaultOpts(varargin{:}); [parm,varg] = parseOptions(varg,{'noseed'},{'n','fold','sigma','slice'}); n = getOption(parm,'n',256); info.name = 'Cardiac_MRI'; opts.show = 1; fold = getOption(parm,'fold', 6); % undersampling level sigma = getOption(parm,'sigma', 0.05);; % noise level z = getOption(parm,'slice', 5);; % slice number (1-10) szt = 20; % number of time samples % Return problem name if requested if opts.getname, data = info.name; return; end; % Initialize random number generators if (~parm.noseed), randn('state',0); rand('twister',2000); end; % Set up the data % if allowed use variable density %pdf = genPDF([n,n],5,0.1,2,0.1,0); %load heart images FS=filesep; TMPpath=pwd; [pathstr1, name, ext, versn] = fileparts(which('SMALLboxSetup.m')); cd([pathstr1,FS,'data',FS,'images',FS,'Cardiac_MRI_dataset',FS,'Images']); [filename,pathname] = uigetfile({'*.mat;'},'Select a patient MRI image set'); [pathstr, name, ext, versn] = fileparts(filename); load(filename); data.name=name; cd(TMPpath); % Set up the problem % Get 3D matrix of heart images (size 256x256, 20 frames) and stack them to % 2D matrix (256 x 256*20) data.signal = reshape(sol_yxzt(:,:,z,:), [n n*szt]); % make a noise matrix noise_var=sqrt(sigma*var(reshape(data.signal, [n*n*szt 1]))); data.noise = randn(n,n*szt)*noise_var + sqrt(-1)*randn(n,n*szt)*noise_var; % make a mask of random lines in phase encode and time domain random - vector % of 0 and 1 of size n*szt multiplied with vector of 1 of size n mask = rand(n*szt,1); mask(mask>(1-1/fold))=1; mask(mask<=(1-1/fold))=0; mask=(mask*ones(1,n))'; data.op.mask = opMask(mask); data.op.padding = opPadding([n,n*szt],[n,n*szt]); % make an fft 2D dictionary. It will do 2D fft on evry image in the stack data.op.fft2d = opKron(opDiag(szt,1), opFFT2C(n,n)); % make measurement operator mask*padding*fft2d data.M = opFoG(data.op.mask, data.op.padding, ... data.op.fft2d); % make a mesurement vector b = M* (signal + noise) where s+n is stack to 1d vector data.b = data.M(reshape(data.signal + data.noise,[n*n*szt,1]),1); data = completeOps(data); % Additional information info.title = 'Cardiac-MRI'; info.thumb = 'figcardiacProblem'; info.citations = {'LustDonoPaul:2007','sparsemri'}; info.fig{1}.title = 'Cardiac MRI'; % info.fig{1}.filename = 'figProblemCardiac'; % info.fig{2}.title = 'Probability density function'; % info.fig{2}.filename = 'figProblem503PDF'; % info.fig{3}.title = 'Sampling mask'; % info.fig{3}.filename = 'figProblem503Mask'; % Set the info field in data data.info = info; opts.figinc=1; % Plot figures if opts.update || opts.show %figure(opts.figno); opts.figno = opts.figno + opts.figinc; mov=reshape(data.signal/500, [n n szt]); implay(mov); clear mov; %updateFigure(opts, info.fig{1}.title, info.fig{1}.filename); movMeas=reshape(abs(data.A(data.b,2))/500, [n n szt]); implay(movMeas); clear movMeas; % figure(opts.figno); opts.figno = opts.figno + opts.figinc; % imagesc(pdf), colormap gray; % updateFigure(opts, info.fig{2}.title, info.fig{2}.filename) implay(reshape(mask, [n n szt])); % figure(opts.figno); opts.figno = opts.figno + opts.figinc; % imagesc(mask), colormap gray % updateFigure(opts, info.fig{3}.title, info.fig{3}.filename) % % if opts.update % mn = min(min(data.signal + real(data.noise))); % mx = max(max(data.signal + real(data.noise))); % P = (data.signal + real(data.noise) - mn) / (mx - mn); % P = scaleImage(P,128,128); % P = P(1:2:end,1:2:end,:); % thumbwrite(P, info.thumb, opts); % end end