Mercurial > hg > smallbox
view util/SMALL_learn.m @ 31:1b63e6a201a2
(none)
author | idamnjanovic |
---|---|
date | Tue, 29 Jun 2010 11:06:48 +0000 |
parents | fc395272d53e |
children | e6191f5bb21b |
line wrap: on
line source
function DL = SMALL_learn(Problem,DL) %%% SMALL Dictionary Learning % % Centre for Digital Music, Queen Mary, University of London. % This file copyright 2009 Ivan Damnjanovic. % % This program is free software; you can redistribute it and/or % modify it under the terms of the GNU General Public License as % published by the Free Software Foundation; either version 2 of the % License, or (at your option) any later version. See the file % COPYING included with this distribution for more information. % % Function gets as input Problem and Dictionary Learning (DL) structures % In Problem structure field b with the training set needs to be defined % In DL fields with name of the toolbox and solver, and parameters file % for particular dictionary learning technique needs to be present. % % Outputs are Learned dictionary and time spent as a part of DL structure %% fprintf('\nStarting Dictionary Learning %s... \n', DL.name); start=cputime; if strcmpi(DL.toolbox,'KSVD') param=DL.param; param.data=Problem.b; D = eval([DL.name,'(param, ''t'', 5);']); elseif strcmpi(DL.toolbox,'KSVDS') param=DL.param; param.data=Problem.b; D = eval([DL.name,'(param, ''t'', 5);']); elseif strcmpi(DL.toolbox,'SPAMS') X = Problem.b; param=DL.param; D = eval([DL.name,'(X, param);']); % As some versions of SPAMS does not produce unit norm column % dictionaries, we need to make sure that columns are normalised to % unit lenght. for i = 1: size(D,2) D(:,i)=D(:,i)/norm(D(:,i)); end % To introduce new dictionary learning technique put the files in % your Matlab path. Next, unique name <TolboxID> for your toolbox needs % to be defined and also prefferd API for toolbox functions <Preffered_API> % % elseif strcmpi(DL.toolbox,'<ToolboxID>') % % This is an example of API that can be used: % % - get training set from Problem part of structure % % - assign parameters defined in the main program % % X = Problem.b; % param=DL.param; % % % - Evaluate the function (DL.name - defined in the main) with % % parameters given above % % D = eval([DL.name,'(<Preffered_API>);']); else printf('\nToolbox has not been registered. Please change SMALL_learn file.\n'); return end %% % Dictionary Learning time DL.time = cputime - start; fprintf('\n%s finished task in %2f seconds. \n', DL.name, DL.time); % If dictionary is given as a sparse matrix change it to full DL.D = full(D); end