Mercurial > hg > smallbox
view examples/Image Denoising/SMALL_ImgDenoise_DL_test_Training_size.m @ 80:16df822019f1
Setup script removed Sparco's RWT from the path
author | Ivan <ivan.damnjanovic@eecs.qmul.ac.uk> |
---|---|
date | Mon, 28 Mar 2011 12:07:07 +0100 |
parents | cbf3521c25eb |
children | dab78a3598b6 |
line wrap: on
line source
%% DICTIONARY LEARNING FOR IMAGE DENOISING % % Centre for Digital Music, Queen Mary, University of London. % This file copyright 20100 Ivan Damnjanovic. % % This program is free software; you can redistribute it and/or % modify it under the terms of the GNU General Public License as % published by the Free Software Foundation; either version 2 of the % License, or (at your option) any later version. See the file % COPYING included with this distribution for more information. % % This file contains an example of how SMALLbox can be used to test different % dictionary learning techniques in Image Denoising problem. % It calls generateImageDenoiseProblem that will let you to choose image, % add noise and use noisy image to generate training set for dictionary % learning. % We tested time and psnr for two dictionary learning techniques. This % example does not represnt any extensive testing. The aim of this % example is just to show how SMALL structure can be used for testing. % % Two dictionary learning techniques were compared: % - KSVD - M. Elad, R. Rubinstein, and M. Zibulevsky, "Efficient % Implementation of the K-SVD Algorithm using Batch Orthogonal % Matching Pursuit", Technical Report - CS, Technion, April 2008. % - SPAMS - J. Mairal, F. Bach, J. Ponce and G. Sapiro. Online % Dictionary Learning for Sparse Coding. International % Conference on Machine Learning,Montreal, Canada, 2009 % % %% clear all; %% Load an image TMPpath=pwd; FS=filesep; [pathstr1, name, ext, versn] = fileparts(which('SMALLboxSetup.m')); cd([pathstr1,FS,'data',FS,'images']); [filename,pathname] = uigetfile({'*.png;'},'Select a file containin pre-calculated notes'); [pathstr, name, ext, versn] = fileparts(filename); test_image = imread(filename); test_image = double(test_image); cd(TMPpath); % number of different values we want to test n =5; step = floor((size(test_image,1)-8+1)*(size(test_image,2)-8+1)/n); Training_size=zeros(1,n); time = zeros(2,n); psnr = zeros(2,n); for i=1:n % Here we want to test time spent and quality of denoising for % different sizes of training sample. Training_size(i)=i*step; SMALL.Problem = generateImageDenoiseProblem(test_image,Training_size(i)); SMALL.Problem.name=name; %% % Use KSVD Dictionary Learning Algorithm to Learn overcomplete dictionary % Initialising Dictionary structure % Setting Dictionary structure fields (toolbox, name, param, D and time) % to zero values SMALL.DL(1)=SMALL_init_DL(); % Defining the parameters needed for dictionary learning SMALL.DL(1).toolbox = 'KSVD'; SMALL.DL(1).name = 'ksvd'; % Defining the parameters for KSVD % In this example we are learning 256 atoms in 20 iterations, so that % every patch in the training set can be represented with target error in % L2-norm (EData) % Type help ksvd in MATLAB prompt for more options. Edata=sqrt(prod(SMALL.Problem.blocksize)) * SMALL.Problem.sigma * SMALL.Problem.gain; SMALL.DL(1).param=struct(... 'Edata', Edata,... 'initdict', SMALL.Problem.initdict,... 'dictsize', SMALL.Problem.p,... 'iternum', 20); %'memusage', 'high'); % Learn the dictionary SMALL.DL(1) = SMALL_learn(SMALL.Problem, SMALL.DL(1)); % Set SMALL.Problem.A dictionary % (backward compatiblity with SPARCO: solver structure communicate % only with Problem structure, ie no direct communication between DL and % solver structures) SMALL.Problem.A = SMALL.DL(1).D; %% % Initialising solver structure % Setting solver structure fields (toolbox, name, param, solution, % reconstructed and time) to zero values SMALL.solver(1)=SMALL_init_solver; % Defining the parameters needed for denoising SMALL.solver(1).toolbox='ompbox'; SMALL.solver(1).name='ompdenoise'; % Denoising the image - SMALL_denoise function is similar to SMALL_solve, % but backward compatible with KSVD definition of denoising SMALL.solver(1)=SMALL_denoise(SMALL.Problem, SMALL.solver(1)); %% % Use SPAMS Online Dictionary Learning Algorithm % to Learn overcomplete dictionary (Julien Mairal 2009) % (If you have not installed SPAMS please comment the following two cells) % Initialising Dictionary structure % Setting Dictionary structure fields (toolbox, name, param, D and time) % to zero values SMALL.DL(2)=SMALL_init_DL(); % Defining fields needed for dictionary learning SMALL.DL(2).toolbox = 'SPAMS'; SMALL.DL(2).name = 'mexTrainDL'; % Type 'help mexTrainDL in MATLAB prompt for explanation of parameters. SMALL.DL(2).param=struct(... 'D', SMALL.Problem.initdict,... 'K', SMALL.Problem.p,... 'lambda', 2,... 'iter', 300,... 'mode', 3,... 'modeD', 0 ); % Learn the dictionary SMALL.DL(2) = SMALL_learn(SMALL.Problem, SMALL.DL(2)); % Set SMALL.Problem.A dictionary % (backward compatiblity with SPARCO: solver structure communicate % only with Problem structure, ie no direct communication between DL and % solver structures) SMALL.Problem.A = SMALL.DL(2).D; %% % Initialising solver structure % Setting solver structure fields (toolbox, name, param, solution, % reconstructed and time) to zero values SMALL.solver(2)=SMALL_init_solver; % Defining the parameters needed for denoising SMALL.solver(2).toolbox='ompbox'; SMALL.solver(2).name='ompdenoise'; % Denoising the image - SMALL_denoise function is similar to SMALL_solve, % but backward compatible with KSVD definition of denoising SMALL.solver(2)=SMALL_denoise(SMALL.Problem, SMALL.solver(2)); %% show results %% % This will show denoised images and dictionaries for all training sets. % If you are not interested to see them and do not want clutter your % screen comment following line SMALL_ImgDeNoiseResult(SMALL); time(1,i) = SMALL.DL(1).time; psnr(1,i) = SMALL.solver(1).reconstructed.psnr; time(2,i) = SMALL.DL(2).time; psnr(2,i) = SMALL.solver(2).reconstructed.psnr; clear SMALL end %% show time and psnr %% figure('Name', 'KSVD vs SPAMS'); subplot(1,2,1); plot(Training_size, time(1,:), 'ro-', Training_size, time(2,:), 'b*-'); legend('KSVD','SPAMS',0); title('Time vs Training size'); xlabel('Training Size (Num. of patches)'); ylabel('Time(s)'); subplot(1,2,2); plot(Training_size, psnr(1,:), 'ro-', Training_size, psnr(2,:), 'b*-'); legend('KSVD','SPAMS',0); title('PSNR vs Training size'); xlabel('Training Size (Num. of patches)'); ylabel('PSNR(dB)');