Mercurial > hg > smallbox
view solvers/SMALL_ompGabor/myblas.h @ 166:1495bdfa13e9 danieleb
Updated grassmanian function (restored old computation of the dictionary) and added functions to the audio class
author | Daniele Barchiesi <daniele.barchiesi@eecs.qmul.ac.uk> |
---|---|
date | Mon, 19 Sep 2011 14:53:23 +0100 |
parents | 31d2864dfdd4 |
children |
line wrap: on
line source
/************************************************************************** * * File name: myblas.h * * Ron Rubinstein * Computer Science Department * Technion, Haifa 32000 Israel * ronrubin@cs * * Version: 1.1 * Last updated: 17.8.2009 * * A collection of basic linear algebra functions, in the spirit of the * BLAS/LAPACK libraries. * *************************************************************************/ #ifndef __MY_BLAS_H__ #define __MY_BLAS_H__ #include "mex.h" #include <math.h> /************************************************************************** * Squared value. **************************************************************************/ #define SQR(X) ((X)*(X)) /************************************************************************** * Matrix-vector multiplication. * * Computes an operation of the form: * * y := alpha*A*x * * Parameters: * A - matrix of size n X m * x - vector of length m * y - output vector of length n * alpha - real constant * n, m - dimensions of A * * Note: This function re-writes the contents of y. * **************************************************************************/ void mat_vec(double alpha, double A[], double x[], double y[], mwSize n, mwSize m); /************************************************************************** * Matrix-transpose-vector multiplication. * * Computes an operation of the form: * * y := alpha*A'*x * * Parameters: * A - matrix of size n X m * x - vector of length n * y - output vector of length m * alpha - real constant * n, m - dimensions of A * * Note: This function re-writes the contents of y. * **************************************************************************/ void matT_vec(double alpha, double A[], double x[], double y[], mwSize n, mwSize m); /************************************************************************** * Sparse-matrix-vector multiplication. * * Computes an operation of the form: * * y := alpha*A*x * * where A is a sparse matrix. * * Parameters: * pr,ir,jc - sparse representation of the matrix A, of size n x m * x - vector of length m * y - output vector of length n * alpha - real constant * n, m - dimensions of A * * Note: This function re-writes the contents of y. * **************************************************************************/ void mat_sp_vec(double alpha, double pr[], mwIndex ir[], mwIndex jc[], double x[], double y[], mwSize n, mwSize m); /************************************************************************** * Sparse-matrix-transpose-vector multiplication. * * Computes an operation of the form: * * y := alpha*A'*x * * where A is a sparse matrix. * * Parameters: * pr,ir,jc - sparse representation of the matrix A, of size n x m * x - vector of length m * y - output vector of length n * alpha - real constant * n, m - dimensions of A * * Note: This function re-writes the contents of y. * **************************************************************************/ void matT_sp_vec(double alpha, double pr[], mwIndex ir[], mwIndex jc[], double x[], double y[], mwSize n, mwSize m); /************************************************************************** * Matrix-sparse-vector multiplication. * * Computes an operation of the form: * * y := alpha*A*x * * where A is a matrix and x is a sparse vector. * * Parameters: * A - matrix of size n X m * pr,ir,jc - sparse representation of the vector x, of length m * y - output vector of length n * alpha - real constant * n, m - dimensions of A * * Note: This function re-writes the contents of y. * **************************************************************************/ void mat_vec_sp(double alpha, double A[], double pr[], mwIndex ir[], mwIndex jc[], double y[], mwSize n, mwSize m); /************************************************************************** * Matrix-transpose-sparse-vector multiplication. * * Computes an operation of the form: * * y := alpha*A'*x * * where A is a matrix and x is a sparse vector. * * Parameters: * A - matrix of size n X m * pr,ir,jc - sparse representation of the vector x, of length n * y - output vector of length m * alpha - real constant * n, m - dimensions of A * * Note: This function re-writes the contents of y. * **************************************************************************/ void matT_vec_sp(double alpha, double A[], double pr[], mwIndex ir[], mwIndex jc[], double y[], mwSize n, mwSize m); /************************************************************************** * Sparse-matrix-sparse-vector multiplication. * * Computes an operation of the form: * * y := alpha*A*x * * where A is a sparse matrix and x is a sparse vector. * * Parameters: * pr,ir,jc - sparse representation of the matrix A, of size n x m * prx,irx,jcx - sparse representation of the vector x (of length m) * y - output vector of length n * alpha - real constant * n, m - dimensions of A * * Note: This function re-writes the contents of y. * **************************************************************************/ void mat_sp_vec_sp(double alpha, double pr[], mwIndex ir[], mwIndex jc[], double prx[], mwIndex irx[], mwIndex jcx[], double y[], mwSize n, mwSize m); /************************************************************************** * Sparse-matrix-transpose-sparse-vector multiplication. * * Computes an operation of the form: * * y := alpha*A'*x * * where A is a sparse matrix and x is a sparse vector. * * Importnant note: this function is provided for completeness, but is NOT efficient. * If possible, convert x to non-sparse representation and use matT_vec_sp instead. * * Parameters: * pr,ir,jc - sparse representation of the matrix A, of size n x m * prx,irx,jcx - sparse representation of the vector x (of length n) * y - output vector of length n * alpha - real constant * n, m - dimensions of A * * Note: This function re-writes the contents of y. * **************************************************************************/ void matT_sp_vec_sp(double alpha, double pr[], mwIndex ir[], mwIndex jc[], double prx[], mwIndex irx[], mwIndex jcx[], double y[], mwSize n, mwSize m); /************************************************************************** * Matrix-matrix multiplication. * * Computes an operation of the form: * * X := alpha*A*B * * Parameters: * A - matrix of size n X m * B - matrix of size m X k * X - output matrix of size n X k * alpha - real constant * n, m, k - dimensions of A, B * * Note: This function re-writes the contents of X. * **************************************************************************/ void mat_mat(double alpha, double A[], double B[], double X[], mwSize n, mwSize m, mwSize k); /************************************************************************** * Matrix-transpose-matrix multiplication. * * Computes an operation of the form: * * X := alpha*A*B * * Parameters: * A - matrix of size n X m * B - matrix of size m X k * X - output matrix of size n X k * alpha - real constant * n, m, k - dimensions of A, B * * Note: This function re-writes the contents of X. * **************************************************************************/ void matT_mat(double alpha, double A[], double B[], double X[], mwSize n, mwSize m, mwSize k); /************************************************************************** * Tensor-matrix multiplication. * * This function accepts a 3-D tensor A of size n X m X k * and a 2-D matrix B of size l X k. * The function computes the 3-D tensor X of size n X m X l, where * * X(i,j,:) = B*A(i,j,:) * * for all i,j. * * Parameters: * A - tensor of size n X m X k * B - matrix of size l X k * X - output tensor of size n X m X l * alpha - real constant * n, m, k, l - dimensions of A, B * * Note: This function re-writes the contents of X. * **************************************************************************/ void tens_mat(double alpha, double A[], double B[], double X[], mwSize n, mwSize m, mwSize k, mwSize l); /************************************************************************** * Tensor-matrix-transpose multiplication. * * This function accepts a 3-D tensor A of size n X m X k * and a 2-D matrix B of size k X l. * The function computes the 3-D tensor X of size n X m X l, where * * X(i,j,:) = B'*A(i,j,:) * * for all i,j. * * Parameters: * A - tensor of size n X m X k * B - matrix of size k X l * X - output tensor of size n X m X l * alpha - real constant * n, m, k, l - dimensions of A, B * * Note: This function re-writes the contents of X. * **************************************************************************/ void tens_matT(double alpha, double A[], double B[], double X[], mwSize n, mwSize m, mwSize k, mwSize l); /************************************************************************** * Vector-vector sum. * * Computes an operation of the form: * * y := alpha*x + y * * Parameters: * x - vector of length n * y - output vector of length n * alpha - real constant * n - length of x,y * * Note: This function re-writes the contents of y. * **************************************************************************/ void vec_sum(double alpha, double x[], double y[], mwSize n); /************************************************************************** * Vector-vector scalar multiply. * * Computes an operation of the form: * * y := alpha* x.*y * * Parameters: * x - vector of length n * y - output vector of length n * alpha - real constant * n - length of x,y * * Note: This function re-writes the contents of y. * **************************************************************************/ void vec_smult(double alpha, double x[], double y[], mwSize n); /************************************************************************** * Triangular back substitution. * * Solve the set of linear equations * * T*x = b * * where T is lower or upper triangular. * * Parameters: * ul - 'U' for upper triangular, 'L' for lower triangular * A - matrix of size n x m containing T * b - vector of length k * x - output vector of length k * n - size of first dimension of A * k - the size of the equation set, k<=n,m * * Note: * The matrix A can be of any size n X m, as long as n,m >= k. * Only the lower/upper triangle of the submatrix A(1:k,1:k) defines the * matrix T (depending on the parameter ul). * **************************************************************************/ void backsubst(char ul, double A[], double b[], double x[], mwSize n, mwSize k); /************************************************************************** * Solve a set of equations using a Cholesky decomposition. * * Solve the set of linear equations * * M*x = b * * where M is positive definite with a known Cholesky decomposition: * either M=L*L' (L lower triangular) or M=U'*U (U upper triangular). * * Parameters: * ul - 'U' for upper triangular, 'L' for lower triangular decomposition * A - matrix of size n x m with the Cholesky decomposition of M * b - vector of length k * x - output vector of length k * n - size of first dimension of A * k - the size of the equation set, k<=n,m * * Note: * The matrix A can be of any size n X m, as long as n,m >= k. * Only the lower/upper triangle of the submatrix A(1:k,1:k) is used as * the Cholesky decomposition of M (depending on the parameter ul). * **************************************************************************/ void cholsolve(char ul, double A[], double b[], double x[], mwSize n, mwSize k); /************************************************************************** * Maximum absolute value. * * Returns the index of the coefficient with maximal absolute value in a vector. * * Parameters: * x - vector of length n * n - length of x * **************************************************************************/ mwIndex maxabs(double x[], mwSize n); /************************************************************************** * Maximum vector element. * * Returns the index of the maximal coefficient in a vector. * * Parameters: * x - vector of length n * n - length of x * **************************************************************************/ mwIndex maxpos(double x[], mwSize n); /************************************************************************** * Vector-vector dot product. * * Computes an operation of the form: * * c = a'*b * * Parameters: * a, b - vectors of length n * n - length of a,b * * Returns: The dot product c. * **************************************************************************/ double dotprod(double a[], double b[], mwSize n); /************************************************************************** * Indexed vector assignment. * * Perform a permutation assignment of the form * * y = x(ind) * * where ind is an array of indices to x. * * Parameters: * y - output vector of length k * x - input vector of arbitrary length * ind - array of indices into x (indices begin at 0) * k - length of the array ind * **************************************************************************/ void vec_assign(double y[], double x[], mwIndex ind[], mwSize k); /************************************************************************** * Matrix transpose. * * Computes Y := X' * * Parameters: * X - input matrix of size n X m * Y - output matrix of size m X n * n, m - dimensions of X * **************************************************************************/ void transpose(double X[], double Y[], mwSize n, mwSize m); /************************************************************************** * Print a matrix. * * Parameters: * A - matrix of size n X m * n, m - dimensions of A * matname - name of matrix to display * **************************************************************************/ void printmat(double A[], int n, int m, char* matname); /************************************************************************** * Print a sparse matrix. * * Parameters: * A - sparse matrix of type double * matname - name of matrix to display * **************************************************************************/ void printspmat(mxArray *A, char* matname); #endif