Mercurial > hg > smallbox
view toolboxes/AudioInpaintingToolbox/Problems/generateDeclippingProblem.m @ 181:0dc98f1c60bb danieleb
minor edits
author | Daniele Barchiesi <daniele.barchiesi@eecs.qmul.ac.uk> |
---|---|
date | Thu, 05 Jan 2012 15:46:13 +0000 |
parents | 56d719a5fd31 |
children |
line wrap: on
line source
function [problemData, solutionData] = generateDeclippingProblem(x,clippingLevel,GR) % % % Usage: % % % Inputs: % - % - % - % - % - % - % - % - % % Outputs: % - % - % - % - % % Note that the CVX library is needed. % % ------------------- % % Audio Inpainting toolbox % Date: June 28, 2011 % By Valentin Emiya, Amir Adler, Maria Jafari % This code is distributed under the terms of the GNU Public License version 3 (http://www.gnu.org/licenses/gpl.txt). % Generate a clipping problem: normalize and clip a signal. % % Usage: % [problemData, solutionData] = makeClippedSignal(x,clippingLevel,GR) % % Inputs: % - x: input signal (may be multichannel) % - clippingLevel: clipping level, between 0 and 1 % - GR (default: false): flag to generate an optional graphical display % % Outputs: % - problemData.x: clipped signal % - problemData.IMiss: boolean vector (same size as problemData.x) that indexes clipped % samples % - problemData.clipSizes: size of the clipped segments (not necessary % for solving the problem) % - solutionData.xClean: clean signal (input signal after normalization % % Note that the input signal is normalized to 0.9999 (-1 is not allowed in % wav files) to provide problemData.x and solutionData.xClean. if nargin<3 || isempty(GR) GR = false; end %% Normalization xMax = 0.9999; solutionData.xClean = x/max(abs(x(:)))*xMax; clippingLevel = clippingLevel*xMax; %% Clipping (hard threshold) problemData.x = min(max(solutionData.xClean,-clippingLevel),clippingLevel); problemData.IMiss = abs(problemData.x)>=clippingLevel; % related indices %% Size of the clipped segments problemData.clipSizes = diff(problemData.IMiss); if problemData.clipSizes(find(problemData.clipSizes,1,'first'))==-1,problemData.clipSizes = [1;problemData.clipSizes]; end if problemData.clipSizes(find(problemData.clipSizes,1,'last'))==1,problemData.clipSizes = [problemData.clipSizes;-1]; end problemData.clipSizes = diff(find(problemData.clipSizes)); problemData.clipSizes = problemData.clipSizes(1:2:end); %% Optional graphical display if GR % Plot histogram of the sizes of the clipped segments if ~isempty(problemData.clipSizes) figure hist(problemData.clipSizes,1:max(problemData.clipSizes)) title('Size of missing segments') xlabel('Size'),ylabel('# of segments') end t = (0:length(solutionData.xClean)-1); % time scale in samples % Plot original and clipped signals figure plot(t,solutionData.xClean,'',t,problemData.x,'') legend('original','clipped') % Scatter plot between original and clipped signals figure plot(solutionData.xClean,problemData.x,'.') xlabel('Original signal'),ylabel('Clipped signal') % Spectrograms N = 512; w = hann(N); fs = 1; NOverlap = round(.8*N); nfft = 2^nextpow2(N)*2*2; figure subplot(3,3,[1,4]) spectrogram(solutionData.xClean,w,NOverlap,nfft,fs,'yaxis') title('Original') xlim(t([1,end])) cl = get(gca,'clim'); set(gca,'clim',cl); subplot(3,3,[1,4]+1) spectrogram(problemData.x,w,NOverlap,nfft,fs,'yaxis') title('Clipped') set(gca,'clim',cl); subplot(3,3,[1,4]+2) spectrogram(solutionData.xClean-problemData.x,w,NOverlap,nfft,fs,'yaxis') title('Error (=original-clipped)') set(gca,'clim',cl); subplot(3,3,7) plot(t,solutionData.xClean,'');xlim(t([1,end])) subplot(3,3,8) plot(t,solutionData.xClean,'',t,problemData.x,'');xlim(t([1,end])) subplot(3,3,9) plot(t,solutionData.xClean-problemData.x,'');xlim(t([1,end])) end return