view util/SMALL_ssim_index.m @ 183:0d7a81655ef2 danieleb

removed cumulative coherence calculation
author Daniele Barchiesi <daniele.barchiesi@eecs.qmul.ac.uk>
date Fri, 27 Jan 2012 13:15:11 +0000
parents 8e660fd14774
children
line wrap: on
line source
function [mssim, ssim_map] = SMALL_ssim_index(img1, img2, K, window, L)
%% SSIM Index - Removed dependence on Image Processing Toolbox 
%========================================================================
%SSIM Index, Version 1.0
%Copyright(c) 2003 Zhou Wang
%All Rights Reserved.
%
%The author is with Howard Hughes Medical Institute, and Laboratory
%for Computational Vision at Center for Neural Science and Courant
%Institute of Mathematical Sciences, New York University.
%
%----------------------------------------------------------------------
%Permission to use, copy, or modify this software and its documentation
%for educational and research purposes only and without fee is hereby
%granted, provided that this copyright notice and the original authors'
%names appear on all copies and supporting documentation. This program
%shall not be used, rewritten, or adapted as the basis of a commercial
%software or hardware product without first obtaining permission of the
%authors. The authors make no representations about the suitability of
%this software for any purpose. It is provided "as is" without express
%or implied warranty.
%----------------------------------------------------------------------
%
%This is an implementation of the algorithm for calculating the
%Structural SIMilarity (SSIM) index between two images. Please refer
%to the following paper:
%
%Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image
%quality assessment: From error measurement to structural similarity"
%IEEE Transactios on Image Processing, vol. 13, no. 1, Jan. 2004.
%
%Kindly report any suggestions or corrections to zhouwang@ieee.org
%
%----------------------------------------------------------------------
%
%Input : (1) img1: the first image being compared
%        (2) img2: the second image being compared
%        (3) K: constants in the SSIM index formula (see the above
%            reference). defualt value: K = [0.01 0.03]
%        (4) window: local window for statistics (see the above
%            reference). default widnow is Gaussian given by
%            window = fspecial('gaussian', 11, 1.5);
%        (5) L: dynamic range of the images. default: L = 255
%
%Output: (1) mssim: the mean SSIM index value between 2 images.
%            If one of the images being compared is regarded as 
%            perfect quality, then mssim can be considered as the
%            quality measure of the other image.
%            If img1 = img2, then mssim = 1.
%        (2) ssim_map: the SSIM index map of the test image. The map
%            has a smaller size than the input images. The actual size:
%            size(img1) - size(window) + 1.
%
%Default Usage:
%   Given 2 test images img1 and img2, whose dynamic range is 0-255
%
%   [mssim ssim_map] = ssim_index(img1, img2);
%
%Advanced Usage:
%   User defined parameters. For example
%
%   K = [0.05 0.05];
%   window = ones(8);
%   L = 100;
%   [mssim ssim_map] = ssim_index(img1, img2, K, window, L);
%
%See the results:
%
%   mssim                        %Gives the mssim value
%   imshow(max(0, ssim_map).^4)  %Shows the SSIM index map
%

% Removed dependence on Image Processing Toolbox - 
%   Centre for Digital Music, Queen Mary, University of London.
%   This file copyright 2011 Ivan Damnjanovic.
%========================================================================


if (nargin < 2 || nargin > 5)
   ssim_index = -Inf;
   ssim_map = -Inf;
   return;
end

if (size(img1) ~= size(img2))
   ssim_index = -Inf;
   ssim_map = -Inf;
   return;
end

[M N] = size(img1);

if (nargin == 2)
   if ((M < 11) || (N < 11))
	   ssim_index = -Inf;
	   ssim_map = -Inf;
      return
   end
%  window = fspecial('gaussian', 11, 1.5);	%
%
%   Image Processing toolboxdependency 
%   - fspecial function is from IMP toolbox
%   2 - ways to do
% a)
%    [wx,wy] = meshgrid(-5:5, -5:5);
%    window = exp(-(wx.*wx + wy.*wy)/4.5);
%    window = window/sum(window(:));
% b)
   window = [1.05756559815326e-06,7.81441153305360e-06,3.70224770827489e-05,0.000112464355116679,0.000219050652866017,0.000273561160085806,0.000219050652866017,0.000112464355116679,3.70224770827489e-05,7.81441153305360e-06,1.05756559815326e-06;...
                7.81441153305360e-06,5.77411251978637e-05,0.000273561160085806,0.000831005429087199,0.00161857756253439,0.00202135875836257,0.00161857756253439,0.000831005429087199,0.000273561160085806,5.77411251978637e-05,7.81441153305360e-06;...
                3.70224770827489e-05,0.000273561160085806,0.00129605559384320,0.00393706926284679,0.00766836382523672,0.00957662749024029,0.00766836382523672,0.00393706926284679,0.00129605559384320,0.000273561160085806,3.70224770827489e-05;...
                0.000112464355116679,0.000831005429087199,0.00393706926284679,0.0119597604100370,0.0232944324734871,0.0290912256485504,0.0232944324734871,0.0119597604100370,0.00393706926284679,0.000831005429087199,0.000112464355116679;...
                0.000219050652866017,0.00161857756253439,0.00766836382523672,0.0232944324734871,0.0453713590956603,0.0566619704916846,0.0453713590956603,0.0232944324734871,0.00766836382523672,0.00161857756253439,0.000219050652866017;...
                0.000273561160085806,0.00202135875836257,0.00957662749024029,0.0290912256485504,0.0566619704916846,0.0707622377639470,0.0566619704916846,0.0290912256485504,0.00957662749024029,0.00202135875836257,0.000273561160085806;...
                0.000219050652866017,0.00161857756253439,0.00766836382523672,0.0232944324734871,0.0453713590956603,0.0566619704916846,0.0453713590956603,0.0232944324734871,0.00766836382523672,0.00161857756253439,0.000219050652866017;...
                0.000112464355116679,0.000831005429087199,0.00393706926284679,0.0119597604100370,0.0232944324734871,0.0290912256485504,0.0232944324734871,0.0119597604100370,0.00393706926284679,0.000831005429087199,0.000112464355116679;...
                3.70224770827489e-05,0.000273561160085806,0.00129605559384320,0.00393706926284679,0.00766836382523672,0.00957662749024029,0.00766836382523672,0.00393706926284679,0.00129605559384320,0.000273561160085806,3.70224770827489e-05;...
                7.81441153305360e-06,5.77411251978637e-05,0.000273561160085806,0.000831005429087199,0.00161857756253439,0.00202135875836257,0.00161857756253439,0.000831005429087199,0.000273561160085806,5.77411251978637e-05,7.81441153305360e-06;...
                1.05756559815326e-06,7.81441153305360e-06,3.70224770827489e-05,0.000112464355116679,0.000219050652866017,0.000273561160085806,0.000219050652866017,0.000112464355116679,3.70224770827489e-05,7.81441153305360e-06,1.05756559815326e-06];
   K(1) = 0.01;								      % default settings
   K(2) = 0.03;								      %
   L = 255;                                  %
end

if (nargin == 3)
   if ((M < 11) || (N < 11))
	   ssim_index = -Inf;
	   ssim_map = -Inf;
      return
   end
%  window = fspecial('gaussian', 11, 1.5);	%
%
%   Image Processing toolboxdependency 
%   - fspecial function is from IMP toolbox
%   2 - ways to do
% a)
%    [wx,wy] = meshgrid(-5:5, -5:5);
%    window = exp(-(wx.*wx + wy.*wy)/4.5);
%    window = window/sum(window(:));
% b)
   window = [1.05756559815326e-06,7.81441153305360e-06,3.70224770827489e-05,0.000112464355116679,0.000219050652866017,0.000273561160085806,0.000219050652866017,0.000112464355116679,3.70224770827489e-05,7.81441153305360e-06,1.05756559815326e-06;...
                7.81441153305360e-06,5.77411251978637e-05,0.000273561160085806,0.000831005429087199,0.00161857756253439,0.00202135875836257,0.00161857756253439,0.000831005429087199,0.000273561160085806,5.77411251978637e-05,7.81441153305360e-06;...
                3.70224770827489e-05,0.000273561160085806,0.00129605559384320,0.00393706926284679,0.00766836382523672,0.00957662749024029,0.00766836382523672,0.00393706926284679,0.00129605559384320,0.000273561160085806,3.70224770827489e-05;...
                0.000112464355116679,0.000831005429087199,0.00393706926284679,0.0119597604100370,0.0232944324734871,0.0290912256485504,0.0232944324734871,0.0119597604100370,0.00393706926284679,0.000831005429087199,0.000112464355116679;...
                0.000219050652866017,0.00161857756253439,0.00766836382523672,0.0232944324734871,0.0453713590956603,0.0566619704916846,0.0453713590956603,0.0232944324734871,0.00766836382523672,0.00161857756253439,0.000219050652866017;...
                0.000273561160085806,0.00202135875836257,0.00957662749024029,0.0290912256485504,0.0566619704916846,0.0707622377639470,0.0566619704916846,0.0290912256485504,0.00957662749024029,0.00202135875836257,0.000273561160085806;...
                0.000219050652866017,0.00161857756253439,0.00766836382523672,0.0232944324734871,0.0453713590956603,0.0566619704916846,0.0453713590956603,0.0232944324734871,0.00766836382523672,0.00161857756253439,0.000219050652866017;...
                0.000112464355116679,0.000831005429087199,0.00393706926284679,0.0119597604100370,0.0232944324734871,0.0290912256485504,0.0232944324734871,0.0119597604100370,0.00393706926284679,0.000831005429087199,0.000112464355116679;...
                3.70224770827489e-05,0.000273561160085806,0.00129605559384320,0.00393706926284679,0.00766836382523672,0.00957662749024029,0.00766836382523672,0.00393706926284679,0.00129605559384320,0.000273561160085806,3.70224770827489e-05;...
                7.81441153305360e-06,5.77411251978637e-05,0.000273561160085806,0.000831005429087199,0.00161857756253439,0.00202135875836257,0.00161857756253439,0.000831005429087199,0.000273561160085806,5.77411251978637e-05,7.81441153305360e-06;...
                1.05756559815326e-06,7.81441153305360e-06,3.70224770827489e-05,0.000112464355116679,0.000219050652866017,0.000273561160085806,0.000219050652866017,0.000112464355116679,3.70224770827489e-05,7.81441153305360e-06,1.05756559815326e-06];
   L = 255;
   if (length(K) == 2)
      if (K(1) < 0 || K(2) < 0)
		   ssim_index = -Inf;
   		ssim_map = -Inf;
	   	return;
      end
   else
	   ssim_index = -Inf;
   	ssim_map = -Inf;
	   return;
   end
end

if (nargin == 4)
   [H W] = size(window);
   if ((H*W) < 4 || (H > M) || (W > N))
	   ssim_index = -Inf;
	   ssim_map = -Inf;
      return
   end
   L = 255;
   if (length(K) == 2)
      if (K(1) < 0 || K(2) < 0)
		   ssim_index = -Inf;
   		ssim_map = -Inf;
	   	return;
      end
   else
	   ssim_index = -Inf;
   	ssim_map = -Inf;
	   return;
   end
end

if (nargin == 5)
   [H W] = size(window);
   if ((H*W) < 4 || (H > M) || (W > N))
	   ssim_index = -Inf;
	   ssim_map = -Inf;
      return
   end
   if (length(K) == 2)
      if (K(1) < 0 || K(2) < 0)
		   ssim_index = -Inf;
   		ssim_map = -Inf;
	   	return;
      end
   else
	   ssim_index = -Inf;
   	ssim_map = -Inf;
	   return;
   end
end

C1 = (K(1)*L)^2;
C2 = (K(2)*L)^2;
window = window/sum(sum(window));
img1 = double(img1);
img2 = double(img2);

mu1   = filter2(window, img1, 'valid');
mu2   = filter2(window, img2, 'valid');
mu1_sq = mu1.*mu1;
mu2_sq = mu2.*mu2;
mu1_mu2 = mu1.*mu2;
sigma1_sq = filter2(window, img1.*img1, 'valid') - mu1_sq;
sigma2_sq = filter2(window, img2.*img2, 'valid') - mu2_sq;
sigma12 = filter2(window, img1.*img2, 'valid') - mu1_mu2;

if (C1 > 0 & C2 > 0)
   ssim_map = ((2*mu1_mu2 + C1).*(2*sigma12 + C2))./((mu1_sq + mu2_sq + C1).*(sigma1_sq + sigma2_sq + C2));
else
   numerator1 = 2*mu1_mu2 + C1;
   numerator2 = 2*sigma12 + C2;
	denominator1 = mu1_sq + mu2_sq + C1;
   denominator2 = sigma1_sq + sigma2_sq + C2;
   ssim_map = ones(size(mu1));
   index = (denominator1.*denominator2 > 0);
   ssim_map(index) = (numerator1(index).*numerator2(index))./(denominator1(index).*denominator2(index));
   index = (denominator1 ~= 0) & (denominator2 == 0);
   ssim_map(index) = numerator1(index)./denominator1(index);
end

mssim = sum(ssim_map(:), [], 'double')/numel(ssim_map);

return