Mercurial > hg > smallbox
view examples/SMALL_test_coherence2.m @ 183:0d7a81655ef2 danieleb
removed cumulative coherence calculation
author | Daniele Barchiesi <daniele.barchiesi@eecs.qmul.ac.uk> |
---|---|
date | Fri, 27 Jan 2012 13:15:11 +0000 |
parents | dc2f0fa21310 |
children |
line wrap: on
line source
% % % clc, clear, close all %% Parameteres nTrials = 10; %number of trials of the experiment % Dictionary learning parameters toolbox = 'TwoStepDL'; %dictionary learning toolbox dicUpdate = 'ksvd'; %dictionary learning updates dicDecorr = {'iterproj','ink-svd','shrinkgram'}; %dictionary decorrelation methods minCoherence = linspace(0.1,1,10); %coherence levels iterNum = 20; %number of iterations epsilon = 1e-6; %tolerance level dictSize = 512; %number of atoms in the dictionary percActiveAtoms = 5; %percentage of active atoms % Test signal parameters signal = audio('music03_16kHz.wav'); %audio signal blockSize = 256; %size of audio frames overlap = 0.5; %overlap between consecutive frames % Dependent parameters nActiveAtoms = fix(blockSize/100*percActiveAtoms); %number of active atoms % Initial dictionaries gaborParam = struct('N',blockSize,'redundancyFactor',2,'wd',@rectwin); gaborDict = Gabor_Dictionary(gaborParam); initDicts = {[],gaborDict}; %% Generate audio approximation problem signal = buffer(signal,blockSize,blockSize*overlap,@rectwin); %buffer frames of audio into columns of the matrix S SMALL.Problem.b = signal.S; SMALL.Problem.b1 = SMALL.Problem.b; % copy signals from training set b to test set b1 (needed for later functions) % omp2 sparse representation solver ompParam = struct('X',SMALL.Problem.b,'epsilon',epsilon,'maxatoms',nActiveAtoms); %parameters solver = SMALL_init_solver('ompbox','omp2',ompParam,false); %solver structure %% Test nDecorrAlgs = length(dicDecorr); %number of decorrelation algorithms nCorrLevels = length(minCoherence); %number of coherence levels nInitDicts = length(initDicts); %number of initial dictionaries SMALL.DL(nTrials,nInitDicts,nCorrLevels,nDecorrAlgs) = SMALL_init_DL(toolbox); %create dictionary learning structures for iTrial=1:nTrials for iInitDicts=1:nInitDicts for iCorrLevels=1:nCorrLevels for iDecorrAlgs=1:nDecorrAlgs SMALL.DL(iTrial,iInitDicts,iCorrLevels,iDecorrAlgs).toolbox = toolbox; SMALL.DL(iTrial,iInitDicts,iCorrLevels,iDecorrAlgs).name = dicUpdate; SMALL.DL(iTrial,iInitDicts,iCorrLevels,iDecorrAlgs).profile = true; SMALL.DL(iTrial,iInitDicts,iCorrLevels,iDecorrAlgs).param = ... struct( 'data',SMALL.Problem.b,... 'Tdata',nActiveAtoms,... 'dictsize',dictSize,... 'iternum',iterNum,... 'memusage','high',... 'solver',solver,... 'decFcn',dicDecorr{iDecorrAlgs},... 'coherence',minCoherence(iCorrLevels),... 'initdict',initDicts(iInitDicts)); SMALL.DL(iTrial,iInitDicts,iCorrLevels,iDecorrAlgs) = ... SMALL_learn(SMALL.Problem,SMALL.DL(iTrial,iInitDicts,iCorrLevels,iDecorrAlgs)); save('SMALL_DL','SMALL'); end end end end %% Evaluate coherence and snr of representation for the various methods sr = zeros(size(SMALL.DL)); %signal to noise ratio mu1 = zeros(nTrials,nInitDicts,nCorrLevels,nDecorrAlgs,blockSize); %cumulative coherence mu2 = zeros(nTrials,nInitDicts,nCorrLevels,nDecorrAlgs,blockSize); %cumulative coherence dic(size(SMALL.DL)) = dictionary; %initialise dictionary objects for iTrial=1:nTrials for iInitDicts=1:nInitDicts for iCorrLevels=1:nCorrLevels for iDecorrAlgs=1:nDecorrAlgs %Sparse representation SMALL.Problem.A = SMALL.DL(iTrial,iInitDicts,iCorrLevels,iDecorrAlgs).D; tempSolver = SMALL_solve(SMALL.Problem,solver); %calculate snr sr(iTrial,iInitDicts,iCorrLevels,iDecorrAlgs) = ... snr(SMALL.Problem.b,SMALL.DL(iTrial,iInitDicts,iCorrLevels,iDecorrAlgs).D*tempSolver.solution); %calculate mu dic(iTrial,iInitDicts,iCorrLevels,iDecorrAlgs) = ... dictionary(SMALL.DL(iTrial,iInitDicts,iCorrLevels,iDecorrAlgs).D); mu1(iTrial,iInitDicts,iCorrLevels,iDecorrAlgs,:) = ... dic(iTrial,iInitDicts,iCorrLevels,iDecorrAlgs).cumcoherence; mu2(iTrial,iInitDicts,iCorrLevels,iDecorrAlgs,:) = ... dic(iTrial,iInitDicts,iCorrLevels,iDecorrAlgs).cumcoherence(2); end end end end %% Plot results minMu = sqrt((dictSize-blockSize)/(blockSize*(dictSize-1))); %lowe bound on coherence initDictsNames = {'Data','Gabor'}; dicDecorrNames = {'IPR','INK-SVD'}; lineStyles = {'k.-','r*-','b+-'}; for iInitDict=1:nInitDicts figure, hold on, grid on title([initDictsNames{iInitDict} ' Initialisation']); plot([1 1],[0 25],'k-'); for iDecorrAlgs=1:nDecorrAlgs-1 coherenceLevels = squeeze(mean(mu(:,iInitDict,:,iDecorrAlgs,1),1)); meanSNRs = squeeze(mean(sr(:,iInitDict,:,iDecorrAlgs),1)); stdSNRs = squeeze(std(sr(:,iInitDict,:,iDecorrAlgs),0,1)); errorbar(coherenceLevels,meanSNRs,stdSNRs,lineStyles{iDecorrAlgs}); end plot([minMu minMu],[0 25],'k--') set(gca,'YLim',[0 25],'XLim',[0 1.4]); legend([{'\mu_{max}'},dicDecorrNames,{'\mu_{min}'}]); xlabel('\mu'); ylabel('SNR (dB)'); end %% mu2 = squeeze(mean(mu2,1)); mu = squeeze(mean(mu,1));