Mercurial > hg > smallbox
view Problems/AudioDenoise_reconstruct.m @ 183:0d7a81655ef2 danieleb
removed cumulative coherence calculation
author | Daniele Barchiesi <daniele.barchiesi@eecs.qmul.ac.uk> |
---|---|
date | Fri, 27 Jan 2012 13:15:11 +0000 |
parents | f42aa8bcb82f |
children |
line wrap: on
line source
function reconstructed=AudioDenoise_reconstruct(y, Problem) %% Audio denoising Problem reconstruction function % % This reconstruction function is using sparse representation y % in dictionary Problem.A to reconstruct denoised audio. % The output structre has following fields: % audio - denoised audio signal % psnr - psnr of the reconstructed audio signal % % [1] I. Damnjanovic, M. E. P. Davies, and M. P. Plumbley "SMALLbox - an % evaluation framework for sparse representations and dictionary % learning algorithms," V. Vigneron et al. (Eds.): LVA/ICA 2010, % Springer-Verlag, Berlin, Germany, LNCS 6365, pp. 418-425 % % Centre for Digital Music, Queen Mary, University of London. % This file copyright 2011 Ivan Damnjanovic. % % This program is free software; you can redistribute it and/or % modify it under the terms of the GNU General Public License as % published by the Free Software Foundation; either version 2 of the % License, or (at your option) any later version. See the file % COPYING included with this distribution for more information. %% windowSize = Problem.windowSize; overlap = Problem.overlap; ws = Problem.ws(windowSize); wa = Problem.wa(windowSize); A = Problem.A; orig = Problem.Original; noisy = Problem.Noisy; % reconstruct audio frames xFrames = diag(ws)*(A*y); wNormFrames = (ws.*wa)'*ones(1,size(xFrames,2)); % overlap and add rec = col2imstep(xFrames, size(noisy), [windowSize 1], [windowSize*overlap 1]); wNorm = col2imstep(wNormFrames, size(noisy), [windowSize 1], [windowSize*overlap 1]); wNorm(find(wNorm==0)) = 1; recN = rec./wNorm; %% output structure image+psnr %% reconstructed.audio = recN; reconstructed.psnr = 20*log10(sqrt(numel(orig)) / norm(orig - reconstructed.audio)); end