Mercurial > hg > smallbox
view examples/Automatic Music Transcription/SMALL_AMT_KSVD_Sparsity_test.m @ 21:0211faef9add
(none)
author | idamnjanovic |
---|---|
date | Tue, 27 Apr 2010 13:31:44 +0000 |
parents | f72603404233 |
children | cbf3521c25eb |
line wrap: on
line source
%% DICTIONARY LEARNING FOR AUTOMATIC MUSIC TRANSCRIPTION EXAMPLE 1 % This file contains an example of how SMALLbox can be used to test diferent % dictionary learning techniques in Automatic Music Transcription problem. % It calls generateAMT_Learning_Problem that will let you to choose midi, % wave or mat file to be transcribe. If file is midi it will be first % converted to wave and original midi file will be used for comparison with % results of dictionary learning and reconstruction. % The function will generarte the Problem structure that is used to learn % Problem.p notes spectrograms from training set Problem.b using % dictionary learning technique defined in DL structure. % % Ivan Damnjanovic 2010 %% clear; % Defining Automatic Transcription of Piano tune as Dictionary Learning % Problem SMALL.Problem = generateAMT_Learning_Problem(); TPmax=0; for i=1:10 %% % Use KSVD Dictionary Learning Algorithm to Learn 88 notes (defined in % SMALL.Problem.p) using sparsity constrain only % Initialising Dictionary structure % Setting Dictionary structure fields (toolbox, name, param, D and time) % to zero values SMALL.DL(i)=SMALL_init_DL(i); % Defining fields needed for dictionary learning SMALL.DL(i).toolbox = 'KSVD'; SMALL.DL(i).name = 'ksvd'; % Defining the parameters for KSVD % In this example we are learning 88 atoms in 100 iterations. % our aim here is to show how individual parameters can be tested in % the AMT problem. We test ten different values for sparity (Tdata) % in KSVD algorithm. % Type help ksvd in MATLAB prompt for more options. Tdata(i)=i; SMALL.DL(i).param=struct('Tdata', Tdata(i), 'dictsize', SMALL.Problem.p, 'iternum', 100); % Learn the dictionary SMALL.DL(i) = SMALL_learn(SMALL.Problem, SMALL.DL(i)); % Set SMALL.Problem.A dictionary and reconstruction function % (backward compatiblity with SPARCO: solver structure communicate % only with Problem structure, ie no direct communication between DL and % solver structures) SMALL.Problem.A = SMALL.DL(i).D; SMALL.Problem.reconstruct = @(x) SMALL_midiGenerate(x, SMALL.Problem); %% % Initialising solver structure % Setting solver structure fields (toolbox, name, param, solution, % reconstructed and time) to zero values % As an example, SPAMS (Julien Mairal 2009) implementation of LARS % algorithm is used for representation of training set in the learned % dictionary. SMALL.solver(1)=SMALL_init_solver; % Defining the parameters needed for sparse representation SMALL.solver(1).toolbox='SPAMS'; SMALL.solver(1).name='mexLasso'; %% % Initialising solver structure % Setting solver structure fields (toolbox, name, param, solution, % reconstructed and time) to zero values % As an example, SPAMS (Julien Mairal 2009) implementation of LARS % algorithm is used for representation of training set in the learned % dictionary. SMALL.solver(1).param=struct(... 'lambda', 2,... 'pos', 1,... 'mode', 2); % Call SMALL_soolve to represent the signal in the given dictionary. % As a final command SMALL_solve will call above defined reconstruction % function to reconstruct the training set (Problem.b) in the learned % dictionary (Problem.A) SMALL.solver(1)=SMALL_solve(SMALL.Problem, SMALL.solver(1)); %% % Analysis of the result of automatic music transcription. If groundtruth % exists, we can compare transcribed notes and original and get usual % True Positives, False Positives and False Negatives measures. AMT_res(i) = AMT_analysis(SMALL.Problem, SMALL.solver(1)); if AMT_res(i).TP>TPmax TPmax=AMT_res(i).TP; BLmidi=SMALL.solver(1).reconstructed.midi; max=i; end end % end of for loop %% % Plot results and save midi files figAMTbest=SMALL_AMT_plot(SMALL, AMT_res(max)); resFig=figure('Name', 'Automatic Music Transcription KSVD Sparsity TEST'); subplot (3,1,1); plot(Tdata(:), [AMT_res(:).TP], 'ro-'); title('True Positives vs Tdata'); subplot (3,1,2); plot(Tdata(:), [AMT_res(:).FN], 'ro-'); title('False Negatives vs Tdata'); subplot (3,1,3); plot(Tdata(:), [AMT_res(:).FP], 'ro-'); title('False Positives vs Tdata'); FS=filesep; [pathstr1, name, ext, versn] = fileparts(which('SMALLboxSetup.m')); cd([pathstr1,FS,'results']); [filename,pathname] = uiputfile({' *.mid;' },'Save midi'); if filename~=0 writemidi(BLmidi, [pathname,FS,filename]);end [filename,pathname] = uiputfile({' *.fig;' },'Save figure TP/FN/FP vs Tdata'); if filename~=0 saveas(resFig, [pathname,FS,filename]);end [filename,pathname] = uiputfile({' *.fig;' },'Save BEST AMT figure'); if filename~=0 saveas(figAMTbest, [pathname,FS,filename]);end