Mercurial > hg > smallbox
diff examples/Image Denoising/SMALL_ImgDenoise_DL_test_SPAMS_lambda.m @ 6:f72603404233
(none)
author | idamnjanovic |
---|---|
date | Mon, 22 Mar 2010 10:45:01 +0000 |
parents | |
children | cbf3521c25eb |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/examples/Image Denoising/SMALL_ImgDenoise_DL_test_SPAMS_lambda.m Mon Mar 22 10:45:01 2010 +0000 @@ -0,0 +1,121 @@ +%% DICTIONARY LEARNING FOR IMAGE DENOISING +% This file contains an example of how SMALLbox can be used to test different +% dictionary learning techniques in Image Denoising problem. +% This example can be used to test SPAMS for different values of +% parameter lambda. In no way it represents extensive testing of image +% denoising. It should only give an idea how SMALL structure can be used +% for testing. +% +% Ivan Damnjanovic 2010 +%% + +clear all; + +%% Load an image +TMPpath=pwd; +FS=filesep; +[pathstr1, name, ext, versn] = fileparts(which('SMALLboxSetup.m')); +cd([pathstr1,FS,'data',FS,'images']); +[filename,pathname] = uigetfile({'*.png;'},'Select a file containin pre-calculated notes'); +[pathstr, name, ext, versn] = fileparts(filename); +test_image = imread(filename); +test_image = double(test_image); +cd(TMPpath); +%% + +% number of different values we want to test + +n =4; + +lambda=zeros(1,n); +time = zeros(2,n); +psnr = zeros(2,n); + +for i=1:n + + % Here we want to test time spent and quality of denoising for + % different lambda parameters. + + lambda(i)=1+i*0.5; + + % Defining Image Denoising Problem as Dictionary Learning Problem. + + SMALL.Problem = generateImageDenoiseProblem(test_image); + SMALL.Problem.name=name; + %% + % Use SPAMS Online Dictionary Learning Algorithm + % to Learn overcomplete dictionary (Julien Mairal 2009) + + % Initialising Dictionary structure + % Setting Dictionary structure fields (toolbox, name, param, D and time) + % to zero values + + SMALL.DL(1)=SMALL_init_DL(); + + % Defining fields needed for dictionary learning + + SMALL.DL(1).toolbox = 'SPAMS'; + SMALL.DL(1).name = 'mexTrainDL'; + + % Type 'help mexTrainDL in MATLAB prompt for explanation of parameters. + + SMALL.DL(1).param=struct(... + 'D', SMALL.Problem.initdict,... + 'K', SMALL.Problem.p,... + 'lambda', lambda(i),... + 'iter', 200,... + 'mode', 3,... + 'modeD', 0); + + % Learn the dictionary + + SMALL.DL(1) = SMALL_learn(SMALL.Problem, SMALL.DL(1)); + + % Set SMALL.Problem.A dictionary + % (backward compatiblity with SPARCO: solver structure communicate + % only with Problem structure, ie no direct communication between DL and + % solver structures) + + SMALL.Problem.A = SMALL.DL(1).D; + + + %% + % Initialising solver structure + % Setting solver structure fields (toolbox, name, param, solution, + % reconstructed and time) to zero values + + SMALL.solver(1)=SMALL_init_solver; + + % Defining the parameters needed for sparse representation + + SMALL.solver(1).toolbox='ompbox'; + SMALL.solver(1).name='ompdenoise'; + + % Denoising the image - SMALL_denoise function is similar to SMALL_solve, + % but backward compatible with KSVD definition of denoising + + SMALL.solver(1)=SMALL_denoise(SMALL.Problem, SMALL.solver(1)); + + + %% show results %% + % This will show denoised image and dictionary for all lambdas. If you + % are not interested to see it and do not want clutter your screen + % comment following line + + SMALL_ImgDeNoiseResult(SMALL); + + + time(1,i) = SMALL.DL(1).time; + psnr(1,i) = SMALL.solver(1).reconstructed.psnr; + + clear SMALL +end + +%% show time and psnr %% +figure('Name', 'SPAMS LAMBDA TEST'); + +subplot(1,2,1); plot(lambda, time(1,:), 'ro-'); +title('time vs lambda'); +subplot(1,2,2); plot(lambda, psnr(1,:), 'b*-'); +title('PSNR vs lambda'); +