Mercurial > hg > smallbox
diff examples/Image Denoising/SMALL_ImgDenoise_DL_test_KSVDvsSPAMS.m @ 6:f72603404233
(none)
author | idamnjanovic |
---|---|
date | Mon, 22 Mar 2010 10:45:01 +0000 |
parents | |
children | cd55209c69e1 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/examples/Image Denoising/SMALL_ImgDenoise_DL_test_KSVDvsSPAMS.m Mon Mar 22 10:45:01 2010 +0000 @@ -0,0 +1,229 @@ +%% DICTIONARY LEARNING FOR IMAGE DENOISING +% This file contains an example of how SMALLbox can be used to test different +% dictionary learning techniques in Image Denoising problem. +% It calls generateImageDenoiseProblem that will let you to choose image, +% add noise and use noisy image to generate training set for dictionary +% learning. +% Three dictionary learning techniques were compared: +% - KSVD - M. Elad, R. Rubinstein, and M. Zibulevsky, "Efficient +% Implementation of the K-SVD Algorithm using Batch Orthogonal +% Matching Pursuit", Technical Report - CS, Technion, April 2008. +% - KSVDS - R. Rubinstein, M. Zibulevsky, and M. Elad, "Learning Sparse +% Dictionaries for Sparse Signal Approximation", Technical +% Report - CS, Technion, June 2009. +% - SPAMS - J. Mairal, F. Bach, J. Ponce and G. Sapiro. Online +% Dictionary Learning for Sparse Coding. International +% Conference on Machine Learning,Montreal, Canada, 2009 +% +% +% Ivan Damnjanovic 2010 +%% + +clear; + +% If you want to load the image outside of generateImageDenoiseProblem +% function uncomment following lines. This can be useful if you want to +% denoise more then one image for example. + +% TMPpath=pwd; +% FS=filesep; +% [pathstr1, name, ext, versn] = fileparts(which('SMALLboxSetup.m')); +% cd([pathstr1,FS,'data',FS,'images']); +% [filename,pathname] = uigetfile({'*.png;'},'Select a file containin pre-calculated notes'); +% [pathstr, name, ext, versn] = fileparts(filename); +% test_image = imread(filename); +% test_image = double(test_image); +% cd(TMPpath); +% SMALL.Problem.name=name; + + +% Defining Image Denoising Problem as Dictionary Learning +% Problem. As an input we set the number of training patches. + +SMALL.Problem = generateImageDenoiseProblem('', 40000); + + +%% +% Use KSVD Dictionary Learning Algorithm to Learn overcomplete dictionary + +% Initialising Dictionary structure +% Setting Dictionary structure fields (toolbox, name, param, D and time) +% to zero values + +SMALL.DL(1)=SMALL_init_DL(); + +% Defining the parameters needed for dictionary learning + +SMALL.DL(1).toolbox = 'KSVD'; +SMALL.DL(1).name = 'ksvd'; + +% Defining the parameters for KSVD +% In this example we are learning 256 atoms in 20 iterations, so that +% every patch in the training set can be represented with target error in +% L2-norm (EData) +% Type help ksvd in MATLAB prompt for more options. + +Edata=sqrt(prod(SMALL.Problem.blocksize)) * SMALL.Problem.sigma * SMALL.Problem.gain; +SMALL.DL(1).param=struct(... + 'Edata', Edata,... + 'initdict', SMALL.Problem.initdict,... + 'dictsize', SMALL.Problem.p,... + 'iternum', 20,... + 'memusage', 'high'); + +% Learn the dictionary + +SMALL.DL(1) = SMALL_learn(SMALL.Problem, SMALL.DL(1)); + +% Set SMALL.Problem.A dictionary +% (backward compatiblity with SPARCO: solver structure communicate +% only with Problem structure, ie no direct communication between DL and +% solver structures) + +SMALL.Problem.A = SMALL.DL(1).D; + + +%% +% Initialising solver structure +% Setting solver structure fields (toolbox, name, param, solution, +% reconstructed and time) to zero values + +SMALL.solver(1)=SMALL_init_solver; + +% Defining the parameters needed for image denoising + +SMALL.solver(1).toolbox='ompbox'; +SMALL.solver(1).name='ompdenoise'; + +% Denoising the image - SMALL_denoise function is similar to SMALL_solve, +% but backward compatible with KSVD definition of denoising + +SMALL.solver(1)=SMALL_denoise(SMALL.Problem, SMALL.solver(1)); + +%% +% Use KSVDS Dictionary Learning Algorithm to denoise image + +% Initialising solver structure +% Setting solver structure fields (toolbox, name, param, solution, +% reconstructed and time) to zero values + +SMALL.DL(2)=SMALL_init_DL(); + +% Defining the parameters needed for dictionary learning + +SMALL.DL(2).toolbox = 'KSVDS'; +SMALL.DL(2).name = 'ksvds'; + +% Defining the parameters for KSVDS +% In this example we are learning 256 atoms in 20 iterations, so that +% every patch in the training set can be represented with target error in +% L2-norm (EDataS). We also impose "double sparsity" - dictionary itself +% has to be sparse in the given base dictionary (Tdict - number of +% nonzero elements per atom). +% Type help ksvds in MATLAB prompt for more options. + +EdataS=sqrt(prod(SMALL.Problem.blocksize)) * SMALL.Problem.sigma * SMALL.Problem.gain; +SMALL.DL(2).param=struct(... + 'Edata', EdataS, ... + 'Tdict', 6,... + 'stepsize', 1,... + 'dictsize', SMALL.Problem.p,... + 'iternum', 20,... + 'memusage', 'high'); +SMALL.DL(2).param.initA = speye(SMALL.Problem.p); +SMALL.DL(2).param.basedict{1} = odctdict(8,16); +SMALL.DL(2).param.basedict{2} = odctdict(8,16); + +% Learn the dictionary + +SMALL.DL(2) = SMALL_learn(SMALL.Problem, SMALL.DL(2)); + +% Set SMALL.Problem.A dictionary and SMALL.Problem.basedictionary +% (backward compatiblity with SPARCO: solver structure communicate +% only with Problem structure, ie no direct communication between DL and +% solver structures) + +SMALL.Problem.A = SMALL.DL(2).D; +SMALL.Problem.basedict{1} = SMALL.DL(2).param.basedict{1}; +SMALL.Problem.basedict{2} = SMALL.DL(2).param.basedict{2}; + +%% +% Initialising solver structure +% Setting solver structure fields (toolbox, name, param, solution, +% reconstructed and time) to zero values + +SMALL.solver(2)=SMALL_init_solver; + +% Defining the parameters needed for image denoising + +SMALL.solver(2).toolbox='ompsbox'; +SMALL.solver(2).name='ompsdenoise'; + +% Denoising the image - SMALL_denoise function is similar to SMALL_solve, +% but backward compatible with KSVD definition of denoising +% Pay attention that since implicit base dictionary is used, denoising +% can be much faster then using explicit dictionary in KSVD example. + +SMALL.solver(2)=SMALL_denoise(SMALL.Problem, SMALL.solver(2)); + +%% +% Use SPAMS Online Dictionary Learning Algorithm +% to Learn overcomplete dictionary (Julien Mairal 2009) +% (If you have not installed SPAMS please comment the following two cells) + +% Initialising Dictionary structure +% Setting Dictionary structure fields (toolbox, name, param, D and time) +% to zero values + +SMALL.DL(3)=SMALL_init_DL(); + +% Defining fields needed for dictionary learning + +SMALL.DL(3).toolbox = 'SPAMS'; +SMALL.DL(3).name = 'mexTrainDL'; + +% Type 'help mexTrainDL in MATLAB prompt for explanation of parameters. + +SMALL.DL(3).param=struct(... + 'D', SMALL.Problem.initdict,... + 'K', SMALL.Problem.p,... + 'lambda', 2,... + 'iter', 200,... + 'mode', 3, ... + 'modeD', 0); + +% Learn the dictionary + +SMALL.DL(3) = SMALL_learn(SMALL.Problem, SMALL.DL(3)); + +% Set SMALL.Problem.A dictionary +% (backward compatiblity with SPARCO: solver structure communicate +% only with Problem structure, ie no direct communication between DL and +% solver structures) + +SMALL.Problem.A = SMALL.DL(3).D; + + +%% +% Initialising solver structure +% Setting solver structure fields (toolbox, name, param, solution, +% reconstructed and time) to zero values + +SMALL.solver(3)=SMALL_init_solver; + +% Defining the parameters needed for denoising + +SMALL.solver(3).toolbox='ompbox'; +SMALL.solver(3).name='ompdenoise'; + +% Denoising the image - SMALL_denoise function is similar to SMALL_solve, +% but backward compatible with KSVD definition of denoising + +SMALL.solver(3)=SMALL_denoise(SMALL.Problem, SMALL.solver(3)); + +%% +% Plot results and save midi files + +% show results % + +SMALL_ImgDeNoiseResult(SMALL);