Mercurial > hg > smallbox
diff examples/Automatic Music Transcription/SMALL_AMT_DL_test.m @ 6:f72603404233
(none)
author | idamnjanovic |
---|---|
date | Mon, 22 Mar 2010 10:45:01 +0000 |
parents | |
children | cbf3521c25eb |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/examples/Automatic Music Transcription/SMALL_AMT_DL_test.m Mon Mar 22 10:45:01 2010 +0000 @@ -0,0 +1,211 @@ +%% DICTIONARY LEARNING FOR AUTOMATIC MUSIC TRANSCRIPTION EXAMPLE 1 +% This file contains an example of how SMALLbox can be used to test diferent +% dictionary learning techniques in Automatic Music Transcription problem. +% It calls generateAMT_Learning_Problem that will let you to choose midi, +% wave or mat file to be transcribe. If file is midi it will be first +% converted to wave and original midi file will be used for comparison with +% results of dictionary learning and reconstruction. +% The function will generarte the Problem structure that is used to learn +% Problem.p notes spectrograms from training set Problem.b using +% dictionary learning technique defined in DL structure. +% +% Ivan Damnjanovic 2010 +%% + +clear; + + +% Defining Automatic Transcription of Piano tune as Dictionary Learning +% Problem + +SMALL.Problem = generateAMT_Learning_Problem(); + +%% +% Use KSVD Dictionary Learning Algorithm to Learn 88 notes (defined in +% SMALL.Problem.p) using sparsity constrain only + +% Initialising Dictionary structure +% Setting Dictionary structure fields (toolbox, name, param, D and time) +% to zero values + +SMALL.DL(1)=SMALL_init_DL(); + +% Defining fields needed for dictionary learning + +SMALL.DL(1).toolbox = 'KSVD'; +SMALL.DL(1).name = 'ksvd'; +% Defining the parameters for KSVD +% In this example we are learning 88 atoms in 100 iterations, so that +% every frame in the training set can be represented with maximum 3 +% dictionary elements. Type help ksvd in MATLAB prompt for more options. + +SMALL.DL(1).param=struct(... + 'Tdata', 3,... + 'dictsize', SMALL.Problem.p,... + 'iternum', 100); + +% Learn the dictionary + +SMALL.DL(1) = SMALL_learn(SMALL.Problem, SMALL.DL(1)); + +% Set SMALL.Problem.A dictionary and reconstruction function +% (backward compatiblity with SPARCO: solver structure communicate +% only with Problem structure, ie no direct communication between DL and +% solver structures) + +SMALL.Problem.A = SMALL.DL(1).D; +SMALL.Problem.reconstruct = @(x) SMALL_midiGenerate(x, SMALL.Problem); + +%% +% Initialising solver structure +% Setting solver structure fields (toolbox, name, param, solution, +% reconstructed and time) to zero values +% As an example, SPAMS (Julien Mairal 2009) implementation of LARS +% algorithm is used for representation of training set in the learned +% dictionary. + +SMALL.solver(1)=SMALL_init_solver; + +% Defining the parameters needed for sparse representation + +SMALL.solver(1).toolbox='SPAMS'; +SMALL.solver(1).name='mexLasso'; + +% Here we use mexLasso mode=2, with lambda=2, lambda2=0 and positivity +% constrain (type 'help mexLasso' for more information about modes): +% +% min_{alpha_i} (1/2)||x_i-Dalpha_i||_2^2 + lambda||alpha_i||_1 + (1/2)lambda2||alpha_i||_2^2 + +SMALL.solver(1).param=struct(... + 'lambda', 2,... + 'pos', 1,... + 'mode', 2); + +% Call SMALL_soolve to represent the signal in the given dictionary. +% As a final command SMALL_solve will call above defined reconstruction +% function to reconstruct the training set (Problem.b) in the learned +% dictionary (Problem.A) + +SMALL.solver(1)=SMALL_solve(SMALL.Problem, SMALL.solver(1)); + +%% +% Analysis of the result of automatic music transcription. If groundtruth +% exists, we can compare transcribed notes and original and get usual +% True Positives, False Positives and False Negatives measures. + +if ~isempty(SMALL.Problem.notesOriginal) + AMT_res(1) = AMT_analysis(SMALL.Problem, SMALL.solver(1)); +end + + +%% +% Here we solve the same problem using non-negative sparse coding with +% SPAMS online dictionary learning (Julien Mairal 2009) +% + +% Initialising Dictionary structure +% Setting Dictionary structure fields (toolbox, name, param, D and time) +% to zero values + +SMALL.DL(2)=SMALL_init_DL(); + + +% Defining fields needed for dictionary learning + +SMALL.DL(2).toolbox = 'SPAMS'; +SMALL.DL(2).name = 'mexTrainDL'; + +% Type 'help mexTrainDL in MATLAB prompt for explanation of parameters. + +SMALL.DL(2).param=struct(... + 'K', SMALL.Problem.p,... + 'lambda', 3,... + 'iter', 300,... + 'posAlpha', 1,... + 'posD', 1,... + 'whiten', 0,... + 'mode', 2); + +% Learn the dictionary + +SMALL.DL(2) = SMALL_learn(SMALL.Problem, SMALL.DL(2)); + +% Set SMALL.Problem.A dictionary and reconstruction function +% (backward compatiblity with SPARCO: solver structure communicate +% only with Problem structure, ie no direct communication between DL and +% solver structures) + +SMALL.Problem.A = SMALL.DL(2).D; +SMALL.Problem.reconstruct=@(x) SMALL_midiGenerate(x, SMALL.Problem); + +%% +% Initialising solver structure +% Setting solver structure fields (toolbox, name, param, solution, +% reconstructed and time) to zero values +% As an example, SPAMS (Julien Mairal 2009) implementation of LARS +% algorithm is used for representation of training set in the learned +% dictionary. + +SMALL.solver(2)=SMALL_init_solver; + +% Defining the parameters needed for sparse representation + +SMALL.solver(2).toolbox='SPAMS'; +SMALL.solver(2).name='mexLasso'; + +% Here we use mexLasso mode=2, with lambda=3, lambda2=0 and positivity +% constrain (type 'help mexLasso' for more information about modes): +% +% min_{alpha_i} (1/2)||x_i-Dalpha_i||_2^2 + lambda||alpha_i||_1 + (1/2)lambda2||alpha_i||_2^2 + +SMALL.solver(2).param=struct('lambda', 3, 'pos', 1, 'mode', 2); + +% Call SMALL_soolve to represent the signal in the given dictionary. +% As a final command SMALL_solve will call above defined reconstruction +% function to reconstruct the training set (Problem.b) in the learned +% dictionary (Problem.A) + +SMALL.solver(2)=SMALL_solve(SMALL.Problem, SMALL.solver(2)); + +%% +% Analysis of the result of automatic music transcription. If groundtruth +% exists, we can compare transcribed notes and original and get usual +% True Positives, False Positives and False Negatives measures. + +if ~isempty(SMALL.Problem.notesOriginal) + AMT_res(2) = AMT_analysis(SMALL.Problem, SMALL.solver(2)); +end + +%% +% Plot results and save midi files + +if ~isempty(SMALL.Problem.notesOriginal) + figAMT = SMALL_AMT_plot(SMALL, AMT_res); +else + figAMT = figure('Name', 'Automatic Music Transcription KSVD vs SPAMS'); + subplot(2,1,1); plot(SMALL.solver(1).reconstructed.notes(:,5), SMALL.solver(1).reconstructed.notes(:,3), 'kd '); + title (sprintf('%s dictionary in %.2f s', SMALL.DL(1).name, SMALL.DL(1).time)); + xlabel('Time'); + ylabel('Note Number'); + subplot(2,1,2); plot(SMALL.solver(2).reconstructed.notes(:,5), SMALL.solver(2).reconstructed.notes(:,3), 'b* '); + title (sprintf('%s dictionary in %.2f s', SMALL.DL(2).name, SMALL.DL(2).time)); + xlabel('Time'); + ylabel('Note Number'); +end + +FS=filesep; + +[pathstr1, name, ext, versn] = fileparts(which('SMALLboxSetup.m')); +cd([pathstr1,FS,'results']); + +[filename,pathname] = uiputfile({' *.mid;' },'Save KSVD result midi'); +if filename~=0 writemidi(SMALL.solver(1).reconstructed.midi, [pathname,FS,filename]);end + +[filename,pathname] = uiputfile({' *.mid;' },'Save SPAMS result midi'); +if filename~=0 writemidi(SMALL.solver(2).reconstructed.midi, [pathname,FS,filename]);end + +[filename,pathname] = uiputfile({' *.fig;' },'Save KSVD vs SPAMS AMT figure'); +if filename~=0 saveas(figAMT, [pathname,FS,filename]);end + + +