diff util/Rice Wavelet Toolbox/mrdwt.c @ 78:f69ae88b8be5

added Rice Wavelet Toolbox with my modification, so it can be compiled on newer systems.
author Ivan Damnjanovic lnx <ivan.damnjanovic@eecs.qmul.ac.uk>
date Fri, 25 Mar 2011 15:27:33 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/util/Rice Wavelet Toolbox/mrdwt.c	Fri Mar 25 15:27:33 2011 +0000
@@ -0,0 +1,242 @@
+/*
+File Name: mrdwt.c
+Last Modification Date:	%G%	%U%
+Current Version: %M%	%I%
+File Creation Date: Wed Oct 12 08:44:43 1994
+Author: Markus Lang  <lang@jazz.rice.edu>
+
+Copyright: All software, documentation, and related files in this distribution
+           are Copyright (c) 1994  Rice University
+
+Permission is granted for use and non-profit distribution providing that this
+notice be clearly maintained. The right to distribute any portion for profit
+or as part of any commercial product is specifically reserved for the author.
+
+Change History: Fixed code such that the result has the same dimension as the 
+                input for 1D problems. Also, added some standard error checking.
+		Jan Erik Odegard <odegard@ece.rice.edu> Wed Jun 14 1995
+*/
+
+#include <math.h>
+/*#include <malloc.h>*/
+#include <stdio.h>
+#include "mex.h"
+#include "matrix.h"
+#if !defined(_WIN32) && !defined(_WIN64)
+#include <inttypes.h>
+#endif
+#define max(A,B) (A > B ? A : B)
+#define min(A,B) (A < B ? A : B)
+#define even(x)  ((x & 1) ? 0 : 1)
+#define isint(x) ((x - floor(x)) > 0.0 ? 0 : 1)
+
+
+void mexFunction(int nlhs,mxArray *plhs[],int nrhs,const mxArray *prhs[])
+
+{
+  double *x, *h,  *yl, *yh, *Lf, *Lr;
+  intptr_t m, n, h_col, h_row, lh, L, i, po2, j;
+  double mtest, ntest;
+
+  /* check for correct # of input variables */
+  if (nrhs>3){
+    mexErrMsgTxt("There are at most 3 input parameters allowed!");
+    return;
+  }
+  if (nrhs<2){
+    mexErrMsgTxt("There are at least 2 input parameters required!");
+    return;
+  }
+  x = mxGetPr(prhs[0]);
+  n = mxGetN(prhs[0]); 
+  m = mxGetM(prhs[0]); 
+  h = mxGetPr(prhs[1]);
+  h_col = mxGetN(prhs[1]); 
+  h_row = mxGetM(prhs[1]); 
+  if (h_col>h_row)
+    lh = h_col;
+  else  
+    lh = h_row;
+  if (nrhs == 3){
+    L = (intptr_t) *mxGetPr(prhs[2]);
+    if (L < 0)
+      mexErrMsgTxt("The number of levels, L, must be a non-negative integer");
+  }
+  else /* Estimate L */ {
+    i=n;j=0;
+    while (even(i)){
+      i=(i>>1);
+      j++;
+    }
+    L=m;i=0;
+    while (even(L)){
+      L=(L>>1);
+      i++;
+    }
+    if(min(m,n) == 1)
+      L = max(i,j);
+    else
+      L = min(i,j);
+    if (L==0){
+      mexErrMsgTxt("Maximum number of levels is zero; no decomposition can be performed!");
+      return;
+    }
+  }
+  /* Check the ROW dimension of input */
+  if(m > 1){
+    mtest = (double) m/pow(2.0, (double) L);
+    if (!isint(mtest))
+      mexErrMsgTxt("The matrix row dimension must be of size m*2^(L)");
+  }
+  /* Check the COLUMN dimension of input */
+  if(n > 1){
+    ntest = (double) n/pow(2.0, (double) L);
+    if (!isint(ntest))
+      mexErrMsgTxt("The matrix column dimension must be of size n*2^(L)");
+  }
+  plhs[0] = mxCreateDoubleMatrix(m,n,mxREAL);
+  yl = mxGetPr(plhs[0]);
+  if (min(m,n) == 1)
+    plhs[1] = mxCreateDoubleMatrix(m,L*n,mxREAL);
+  else
+    plhs[1] = mxCreateDoubleMatrix(m,3*L*n,mxREAL);
+  yh = mxGetPr(plhs[1]);
+  plhs[2] = mxCreateDoubleMatrix(1,1,mxREAL);
+  Lr = mxGetPr(plhs[2]);
+  *Lr = L;
+  MRDWT(x, m, n, h, lh, L, yl, yh);
+}
+#define mat(a, i, j) (*(a + (m*(j)+i))) 
+
+
+#ifdef __STDC__
+MRDWT(double *x, intptr_t m, intptr_t n, double *h, intptr_t lh, intptr_t L,
+      double *yl, double *yh)
+#else
+MRDWT(x, m, n, h, lh, L, yl, yh)
+double *x, *h, *yl, *yh;
+intptr_t m, n, lh, L;
+#endif
+{
+  double *tmp;
+  double  *h0, *h1, *ydummyll, *ydummylh, *ydummyhl;
+  double *ydummyhh, *xdummyl , *xdummyh;
+  long i, j;
+  intptr_t actual_L, actual_m, actual_n, c_o_a, ir, n_c, n_cb, n_c_o;
+  intptr_t ic, n_r, n_rb, n_r_o, c_o_a_p2n, sample_f;
+  xdummyl = (double *)(intptr_t)mxCalloc(max(m,n)+lh-1,sizeof(double));
+  xdummyh = (double *)(intptr_t)mxCalloc(max(m,n)+lh-1,sizeof(double));
+  ydummyll = (double *)(intptr_t)mxCalloc(max(m,n),sizeof(double));
+  ydummylh = (double *)(intptr_t)mxCalloc(max(m,n),sizeof(double));
+  ydummyhl = (double *)(intptr_t)mxCalloc(max(m,n),sizeof(double));
+  ydummyhh = (double *)(intptr_t)mxCalloc(max(m,n),sizeof(double));
+  h0 = (double *)(intptr_t)mxCalloc(lh,sizeof(double));
+  h1 = (double *)(intptr_t)mxCalloc(lh,sizeof(double));
+
+  if (n==1){
+    n = m;
+    m = 1;
+  }  
+  /* analysis lowpass and highpass */
+  for (i=0; i<lh; i++){
+    h0[i] = h[lh-i-1];
+    h1[i] =h[i];
+  }
+  for (i=0; i<lh; i+=2)
+    h1[i] = -h1[i];
+  
+  actual_m = 2*m;
+  actual_n = 2*n;
+  for (i=0; i<m*n; i++)
+    yl[i] = x[i];
+  
+  /* main loop */
+  sample_f = 1;
+  for (actual_L=1; actual_L <= L; actual_L++){
+    actual_m = actual_m/2;
+    actual_n = actual_n/2;
+    /* actual (level dependent) column offset */
+    if (m==1)
+      c_o_a = n*(actual_L-1);
+    else
+      c_o_a = 3*n*(actual_L-1);
+    c_o_a_p2n = c_o_a + 2*n;
+    
+    /* go by rows */
+    n_cb = n/actual_n;                 /* # of column blocks per row */
+    for (ir=0; ir<m; ir++){            /* loop over rows */
+      for (n_c=0; n_c<n_cb; n_c++){    /* loop within one row */      
+	/* store in dummy variable */
+	ic = -sample_f + n_c;
+	for (i=0; i<actual_n; i++){    
+	  ic = ic + sample_f;
+	  xdummyl[i] = mat(yl, ir, ic);  
+	}
+	/* perform filtering lowpass/highpass */
+	fpconv(xdummyl, actual_n, h0, h1, lh, ydummyll, ydummyhh); 
+	/* restore dummy variables in matrices */
+	ic = -sample_f + n_c;
+	for  (i=0; i<actual_n; i++){    
+	  ic = ic + sample_f;
+	  mat(yl, ir, ic) = ydummyll[i];  
+	  mat(yh, ir, c_o_a+ic) = ydummyhh[i];  
+	} 
+      }
+    }
+      
+    /* go by columns in case of a 2D signal*/
+    if (m>1){
+      n_rb = m/actual_m;                 /* # of row blocks per column */
+      for (ic=0; ic<n; ic++){            /* loop over column */
+	for (n_r=0; n_r<n_rb; n_r++){    /* loop within one column */
+	  /* store in dummy variables */
+	  ir = -sample_f + n_r;
+	  for (i=0; i<actual_m; i++){    
+	    ir = ir + sample_f;
+	    xdummyl[i] = mat(yl, ir, ic);  
+	    xdummyh[i] = mat(yh, ir,c_o_a+ic);  
+	  }
+	  /* perform filtering: first LL/LH, then HL/HH */
+	  fpconv(xdummyl, actual_m, h0, h1, lh, ydummyll, ydummylh); 
+	  fpconv(xdummyh, actual_m, h0, h1, lh, ydummyhl, ydummyhh); 
+	  /* restore dummy variables in matrices */
+	  ir = -sample_f + n_r;
+	  for (i=0; i<actual_m; i++){    
+	    ir = ir + sample_f;
+	    mat(yl, ir, ic) = ydummyll[i];  
+	    mat(yh, ir, c_o_a+ic) = ydummylh[i];  
+	    mat(yh, ir,c_o_a+n+ic) = ydummyhl[i];  
+	    mat(yh, ir, c_o_a_p2n+ic) = ydummyhh[i];  
+	  }
+	}
+      }
+    }
+    sample_f = sample_f*2;
+  }
+}
+
+#ifdef __STDC__
+fpconv(double *x_in, intptr_t lx, double *h0, double *h1, intptr_t lh,
+       double *x_outl, double *x_outh)
+#else
+fpconv(x_in, lx, h0, h1, lh, x_outl, x_outh)
+double *x_in, *h0, *h1, *x_outl, *x_outh;
+intptr_t lx, lh;
+#endif
+{
+  intptr_t i, j;
+  double x0, x1;
+
+  for (i=lx; i < lx+lh-1; i++)
+    x_in[i] = x_in[i-lx];
+  for (i=0; i<lx; i++){
+    x0 = 0;
+    x1 = 0;
+    for (j=0; j<lh; j++){
+      x0 = x0 + x_in[j+i]*h0[lh-1-j];
+      x1 = x1 + x_in[j+i]*h1[lh-1-j];
+    }
+    x_outl[i] = x0;
+    x_outh[i] = x1;
+  }
+}