Mercurial > hg > smallbox
diff util/Rice Wavelet Toolbox/mirdwt.c @ 78:f69ae88b8be5
added Rice Wavelet Toolbox with my modification, so it can be compiled on newer systems.
author | Ivan Damnjanovic lnx <ivan.damnjanovic@eecs.qmul.ac.uk> |
---|---|
date | Fri, 25 Mar 2011 15:27:33 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/util/Rice Wavelet Toolbox/mirdwt.c Fri Mar 25 15:27:33 2011 +0000 @@ -0,0 +1,261 @@ +/* +File Name: mirdwt.c +Last Modification Date: %G% %U% +Current Version: %M% %I% +File Creation Date: Wed Oct 12 08:44:43 1994 +Author: Markus Lang <lang@jazz.rice.edu> + +Copyright: All software, documentation, and related files in this distribution + are Copyright (c) 1994 Rice University + +Permission is granted for use and non-profit distribution providing that this +notice be clearly maintained. The right to distribute any portion for profit +or as part of any commercial product is specifically reserved for the author. + +Change History: Fixed code such that the result has the same dimension as the + input for 1D problems. Also, added some standard error checking. + Jan Erik Odegard <odegard@ece.rice.edu> Wed Jun 14 1995 + +*/ + +#include <math.h> +/*#include <malloc.h>*/ +#include <stdio.h> +#include "mex.h" +#include "matrix.h" +#if !defined(_WIN32) && !defined(_WIN64) +#include <inttypes.h> +#endif +#define max(A,B) (A > B ? A : B) +#define min(A,B) (A < B ? A : B) +#define even(x) ((x & 1) ? 0 : 1) +#define isint(x) ((x - floor(x)) > 0.0 ? 0 : 1) + + +void mexFunction(int nlhs,mxArray *plhs[],int nrhs,const mxArray *prhs[]) + +{ + double *x, *h, *yl, *yh, *Lf, *Lr; + intptr_t m, n, mh, nh, h_col, h_row, lh, L, i, po2, j; + double mtest, ntest; + + /* check for correct # of input variables */ + if (nrhs>4){ + mexErrMsgTxt("There are at most 4 input parameters allowed!"); + return; + } + if (nrhs<3){ + mexErrMsgTxt("There are at least 3 input parameters required!"); + return; + } + yl = mxGetPr(prhs[0]); + n = mxGetN(prhs[0]); + m = mxGetM(prhs[0]); + yh = mxGetPr(prhs[1]); + nh = mxGetN(prhs[1]); + mh = mxGetM(prhs[1]); + h = mxGetPr(prhs[2]); + h_col = mxGetN(prhs[2]); + h_row = mxGetM(prhs[2]); + if (h_col>h_row) + lh = h_col; + else + lh = h_row; + if (nrhs == 4){ + L = (intptr_t) *mxGetPr(prhs[3]); + if (L < 0) + mexErrMsgTxt("The number of levels, L, must be a non-negative integer"); + } + else /* Estimate L */ { + i=n;j=0; + while (even(i)){ + i=(i>>1); + j++; + } + L=m;i=0; + while (even(L)){ + L=(L>>1); + i++; + } + if(min(m,n) == 1) + L = max(i,j); + else + L = min(i,j); + if (L==0){ + mexErrMsgTxt("Maximum number of levels is zero; no decomposition can be performed!"); + return; + } + } + /* check for consistency of rows and columns of yl, yh */ + if (min(m,n) > 1){ + if((m != mh) | (3*n*L != nh)){ + mexErrMsgTxt("Dimensions of first two input matrices not consistent!"); + return; + } + } + else{ + if((m != mh) | (n*L != nh)){ + mexErrMsgTxt("Dimensions of first two input vectors not consistent!");{ + return; + } + } + } + /* Check the ROW dimension of input */ + if(m > 1){ + mtest = (double) m/pow(2.0, (double) L); + if (!isint(mtest)) + mexErrMsgTxt("The matrix row dimension must be of size m*2^(L)"); + } + /* Check the COLUMN dimension of input */ + if(n > 1){ + ntest = (double) n/pow(2.0, (double) L); + if (!isint(ntest)) + mexErrMsgTxt("The matrix column dimension must be of size n*2^(L)"); + } + plhs[0] = mxCreateDoubleMatrix(m,n,mxREAL); + x = mxGetPr(plhs[0]); + plhs[1] = mxCreateDoubleMatrix(1,1,mxREAL); + Lr = mxGetPr(plhs[1]); + *Lr = L; + MIRDWT(x, m, n, h, lh, L, yl, yh); +} +#define mat(a, i, j) (*(a + (m*(j)+i))) /* macro for matrix indices */ + +#ifdef __STDC__ +MIRDWT(double *x, intptr_t m, intptr_t n, double *h, intptr_t lh, intptr_t L, + double *yl, double *yh) +#else +MIRDWT(x, m, n, h, lh, L, yl, yh) +double *x, *h, *yl, *yh; +intptr_t m, n, lh, L; +#endif +{ + double *g0, *g1, *ydummyll, *ydummylh, *ydummyhl; + double *ydummyhh, *xdummyl , *xdummyh, *xh; + intptr_t i, j; + intptr_t actual_L, actual_m, actual_n, c_o_a, ir, n_c, n_cb, n_c_o, lhm1; + intptr_t ic, n_r, n_rb, n_r_o, c_o_a_p2n, sample_f; + xh = (double *)(intptr_t)mxCalloc(m*n,sizeof(double)); + xdummyl = (double *)(intptr_t)mxCalloc(max(m,n),sizeof(double)); + xdummyh = (double *)(intptr_t)mxCalloc(max(m,n),sizeof(double)); + ydummyll = (double *)(intptr_t)mxCalloc(max(m,n)+lh-1,sizeof(double)); + ydummylh = (double *)(intptr_t)mxCalloc(max(m,n)+lh-1,sizeof(double)); + ydummyhl = (double *)(intptr_t)mxCalloc(max(m,n)+lh-1,sizeof(double)); + ydummyhh = (double *)(intptr_t)mxCalloc(max(m,n)+lh-1,sizeof(double)); + g0 = (double *)(intptr_t)mxCalloc(lh,sizeof(double)); + g1 = (double *)(intptr_t)mxCalloc(lh,sizeof(double)); + + if (n==1){ + n = m; + m = 1; + } + /* analysis lowpass and highpass */ + for (i=0; i<lh; i++){ + g0[i] = h[i]/2; + g1[i] = h[lh-i-1]/2; + } + for (i=1; i<=lh; i+=2) + g1[i] = -g1[i]; + + lhm1 = lh - 1; + /* 2^L */ + sample_f = 1; + for (i=1; i<L; i++) + sample_f = sample_f*2; + actual_m = m/sample_f; + actual_n = n/sample_f; + /* restore yl in x */ + for (i=0;i<m*n;i++) + x[i] = yl[i]; + + /* main loop */ + for (actual_L=L; actual_L >= 1; actual_L--){ + /* actual (level dependent) column offset */ + if (m==1) + c_o_a = n*(actual_L-1); + else + c_o_a = 3*n*(actual_L-1); + c_o_a_p2n = c_o_a + 2*n; + + /* go by columns in case of a 2D signal*/ + if (m>1){ + n_rb = m/actual_m; /* # of row blocks per column */ + for (ic=0; ic<n; ic++){ /* loop over column */ + for (n_r=0; n_r<n_rb; n_r++){ /* loop within one column */ + /* store in dummy variables */ + ir = -sample_f + n_r; + for (i=0; i<actual_m; i++){ + ir = ir + sample_f; + ydummyll[i+lhm1] = mat(x, ir, ic); + ydummylh[i+lhm1] = mat(yh, ir, c_o_a+ic); + ydummyhl[i+lhm1] = mat(yh, ir,c_o_a+n+ic); + ydummyhh[i+lhm1] = mat(yh, ir, c_o_a_p2n+ic); + } + /* perform filtering and adding: first LL/LH, then HL/HH */ + bpconv(xdummyl, actual_m, g0, g1, lh, ydummyll, ydummylh); + bpconv(xdummyh, actual_m, g0, g1, lh, ydummyhl, ydummyhh); + /* store dummy variables in matrices */ + ir = -sample_f + n_r; + for (i=0; i<actual_m; i++){ + ir = ir + sample_f; + mat(x, ir, ic) = xdummyl[i]; + mat(xh, ir, ic) = xdummyh[i]; + } + } + } + } + + /* go by rows */ + n_cb = n/actual_n; /* # of column blocks per row */ + for (ir=0; ir<m; ir++){ /* loop over rows */ + for (n_c=0; n_c<n_cb; n_c++){ /* loop within one row */ + /* store in dummy variable */ + ic = -sample_f + n_c; + for (i=0; i<actual_n; i++){ + ic = ic + sample_f; + ydummyll[i+lhm1] = mat(x, ir, ic); + if (m>1) + ydummyhh[i+lhm1] = mat(xh, ir, ic); + else + ydummyhh[i+lhm1] = mat(yh, ir, c_o_a+ic); + } + /* perform filtering lowpass/highpass */ + bpconv(xdummyl, actual_n, g0, g1, lh, ydummyll, ydummyhh); + /* restore dummy variables in matrices */ + ic = -sample_f + n_c; + for (i=0; i<actual_n; i++){ + ic = ic + sample_f; + mat(x, ir, ic) = xdummyl[i]; + } + } + } + sample_f = sample_f/2; + actual_m = actual_m*2; + actual_n = actual_n*2; + } +} + +#ifdef __STDC__ +bpconv(double *x_out, intptr_t lx, double *g0, double *g1, intptr_t lh, + double *x_inl, double *x_inh) +#else +bpconv(x_out, lx, g0, g1, lh, x_inl, x_inh) +double *x_inl, *x_inh, *g0, *g1, *x_out; +intptr_t lx, lh; +#endif +{ + intptr_t i, j; + double x0; + + for (i=lh-2; i > -1; i--){ + x_inl[i] = x_inl[lx+i]; + x_inh[i] = x_inh[lx+i]; + } + for (i=0; i<lx; i++){ + x0 = 0; + for (j=0; j<lh; j++) + x0 = x0 + x_inl[j+i]*g0[lh-1-j] + + x_inh[j+i]*g1[lh-1-j]; + x_out[i] = x0; + } +}