diff util/Rice Wavelet Toolbox/mdwt.c @ 78:f69ae88b8be5

added Rice Wavelet Toolbox with my modification, so it can be compiled on newer systems.
author Ivan Damnjanovic lnx <ivan.damnjanovic@eecs.qmul.ac.uk>
date Fri, 25 Mar 2011 15:27:33 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/util/Rice Wavelet Toolbox/mdwt.c	Fri Mar 25 15:27:33 2011 +0000
@@ -0,0 +1,215 @@
+/*
+File Name: mdwt.c
+Last Modification Date:	06/14/95	12:56:43
+Current Version: mdwt.c	1.5
+File Creation Date: Wed Oct 12 08:44:43 1994
+Author: Markus Lang  <lang@jazz.rice.edu>
+
+Copyright: All software, documentation, and related files in this distribution
+           are Copyright (c) 1994 Rice University
+
+Permission is granted for use and non-profit distribution providing that this
+notice be clearly maintained. The right to distribute any portion for profit
+or as part of any commercial product is specifically reserved for the author.
+
+Change History: Fixed code such that the result has the same dimension as the 
+                input for 1D problems. Also, added some standard error checking.
+		Jan Erik Odegard <odegard@ece.rice.edu> Wed Jun 14 1995
+
+MATLAB gateway for MDWT.c, discrete wavelet transform
+*/
+#include <math.h>
+/*#include <malloc.h>*/
+#include <stdio.h>
+#include "mex.h"
+#include "matrix.h"
+#if !defined(_WIN32) && !defined(_WIN64)
+#include <inttypes.h>
+#endif
+#define max(A,B) (A > B ? A : B)
+#define min(A,B) (A < B ? A : B)
+#define even(x)  ((x & 1) ? 0 : 1)
+#define isint(x) ((x - floor(x)) > 0.0 ? 0 : 1)
+#define mat(a, i, j) (*(a + (m*(j)+i)))  /* macro for matrix indices */
+
+void mexFunction(const int nlhs,mxArray *plhs[],const int nrhs,const mxArray *prhs[])
+
+{
+  double *x, *h,  *y, *Lf, *Lr;
+  intptr_t m, n, h_col, h_row, lh, L, i, po2, j;
+  double mtest, ntest;
+
+  /* check for correct # of input variables */
+  if (nrhs>3){
+    mexErrMsgTxt("There are at most 3 input parameters allowed!");
+    return;
+  }
+  if (nrhs<2){
+    mexErrMsgTxt("There are at least 2 input parameters required!");
+    return;
+  }
+  x = mxGetPr(prhs[0]);
+  n = mxGetN(prhs[0]); 
+  m = mxGetM(prhs[0]); 
+  h = mxGetPr(prhs[1]);
+  h_col = mxGetN(prhs[1]); 
+  h_row = mxGetM(prhs[1]); 
+  if (h_col>h_row)
+    lh = h_col;
+  else  
+    lh = h_row;
+  if (nrhs == 3){
+    L = (intptr_t) *mxGetPr(prhs[2]);
+    if (L < 0)
+      mexErrMsgTxt("The number of levels, L, must be a non-negative integer");
+  }
+  else /* Estimate L */ {
+    i=n;j=0;
+    while (even(i)){
+      i=(i>>1);
+      j++;
+    }
+    L=m;i=0;
+    while (even(L)){
+      L=(L>>1);
+      i++;
+    }
+    if(min(m,n) == 1)
+      L = max(i,j);
+    else
+      L = min(i,j);
+    if (L==0){
+      mexErrMsgTxt("Maximum number of levels is zero; no decomposition can be performed!");
+      return;
+    }
+  }
+  /* Check the ROW dimension of input */
+  if(m > 1){
+    mtest = (double) m/pow(2.0, (double) L);
+    if (!isint(mtest))
+      mexErrMsgTxt("The matrix row dimension must be of size m*2^(L)");
+  }
+  /* Check the COLUMN dimension of input */
+  if(n > 1){
+    ntest = (double) n/pow(2.0, (double) L);
+    if (!isint(ntest))
+      mexErrMsgTxt("The matrix column dimension must be of size n*2^(L)");
+  }
+  plhs[0] = mxCreateDoubleMatrix(m,n,mxREAL);
+  y = mxGetPr(plhs[0]);
+  plhs[1] = mxCreateDoubleMatrix(1,1,mxREAL);
+  Lr = mxGetPr(plhs[1]);
+  *Lr = L;
+  MDWT(x, m, n, h, lh, L, y);
+}
+#ifdef __STDC__
+MDWT(double *x, intptr_t m, intptr_t n, double *h, intptr_t lh, intptr_t L, double *y)
+#else
+MDWT(x, m, n, h, lh, L, y)
+double *x, *h, *y;
+intptr_t m, n, lh, L;
+#endif
+{
+  double  *h0, *h1, *ydummyl, *ydummyh, *xdummy;
+  int *prob;
+  intptr_t i, j;
+  intptr_t actual_L, actual_m, actual_n, r_o_a, c_o_a, ir, ic, lhm1;
+  
+  xdummy = (double *)mxCalloc(max(m,n)+lh-1,sizeof(double));
+  ydummyl =(double *) (intptr_t)mxCalloc(max(m,n),sizeof(double));
+  ydummyh = (double *)(intptr_t)mxCalloc(max(m,n),sizeof(double));
+  h0 =(double *)(intptr_t)mxCalloc(lh,sizeof(double));
+  h1 = (double *)(intptr_t)mxCalloc(lh,sizeof(double));
+  
+  
+  /* analysis lowpass and highpass */
+  if (n==1){
+    n = m;
+    m = 1;
+  }
+  for (i=0; i<lh; i++){
+    h0[i] = h[lh-i-1];
+    h1[i] =h[i];
+  }
+  for (i=0; i<lh; i+=2)
+    h1[i] = -h1[i];
+  
+  lhm1 = lh - 1;
+  actual_m = 2*m;
+  actual_n = 2*n;
+  
+  /* main loop */
+  for (actual_L=1; actual_L <= L; actual_L++){
+    if (m==1)
+      actual_m = 1;
+    else{
+      actual_m = actual_m/2;
+      r_o_a = actual_m/2;     
+    }
+    actual_n = actual_n/2;
+    c_o_a = actual_n/2;
+    
+    /* go by rows */
+    for (ir=0; ir<actual_m; ir++){            /* loop over rows */
+      /* store in dummy variable */
+      for (i=0; i<actual_n; i++)
+	if (actual_L==1)  
+	  xdummy[i] = mat(x, ir, i);  
+	else 
+	  xdummy[i] = mat(y, ir, i);  
+      /* perform filtering lowpass and highpass*/
+      fpsconv(xdummy, actual_n, h0, h1, lhm1, ydummyl, ydummyh); 
+      /* restore dummy variables in matrices */
+      ic = c_o_a;
+      for  (i=0; i<c_o_a; i++){    
+	mat(y, ir, i) = ydummyl[i];  
+	mat(y, ir, ic++) = ydummyh[i];  
+      } 
+    }  
+    
+    /* go by columns in case of a 2D signal*/
+    if (m>1){
+      for (ic=0; ic<actual_n; ic++){            /* loop over column */
+	/* store in dummy variables */
+	for (i=0; i<actual_m; i++)
+	  xdummy[i] = mat(y, i, ic);  
+	/* perform filtering lowpass and highpass*/
+	fpsconv(xdummy, actual_m, h0, h1, lhm1, ydummyl, ydummyh); 
+	/* restore dummy variables in matrix */
+	ir = r_o_a;
+	for (i=0; i<r_o_a; i++){    
+	  mat(y, i, ic) = ydummyl[i];  
+	  mat(y, ir++, ic) = ydummyh[i];  
+	}
+      }
+    }
+  }
+}
+
+#ifdef __STDC__
+fpsconv(double *x_in, intptr_t lx, double *h0, double *h1, intptr_t lhm1, 
+	double *x_outl, double *x_outh)
+#else
+fpsconv(x_in, lx, h0, h1, lhm1, x_outl, x_outh)
+double *x_in, *h0, *h1, *x_outl, *x_outh;
+intptr_t lx, lhm1;
+#endif
+
+{
+ intptr_t i, j, ind;
+  double x0, x1;
+
+  for (i=lx; i < lx+lhm1; i++)
+    x_in[i] = *(x_in+(i-lx));
+  ind = 0;
+  for (i=0; i<(lx); i+=2){
+    x0 = 0;
+    x1 = 0;
+    for (j=0; j<=lhm1; j++){
+      x0 = x0 + x_in[i+j]*h0[lhm1-j];
+      x1 = x1 + x_in[i+j]*h1[lhm1-j];
+    }
+    x_outl[ind] = x0;
+    x_outh[ind++] = x1;
+  }
+}