Mercurial > hg > smallbox
diff examples/Image Denoising/SMALL_ImgDenoise_DL_test_KSVDvsRLSDLA.m @ 78:f69ae88b8be5
added Rice Wavelet Toolbox with my modification, so it can be compiled on newer systems.
author | Ivan Damnjanovic lnx <ivan.damnjanovic@eecs.qmul.ac.uk> |
---|---|
date | Fri, 25 Mar 2011 15:27:33 +0000 |
parents | 55faa9b5d1ac |
children | 4302a91e6033 |
line wrap: on
line diff
--- a/examples/Image Denoising/SMALL_ImgDenoise_DL_test_KSVDvsRLSDLA.m Wed Mar 23 17:08:55 2011 +0000 +++ b/examples/Image Denoising/SMALL_ImgDenoise_DL_test_KSVDvsRLSDLA.m Fri Mar 25 15:27:33 2011 +0000 @@ -30,6 +30,7 @@ [pathstr1, name, ext, versn] = fileparts(which('SMALLboxSetup.m')); cd([pathstr1,FS,'data',FS,'images']); load('test_image.mat'); +cd(TMPpath); % [filename,pathname] = uigetfile({'*.png;'},'Select a file containin pre-calculated notes'); % [pathstr, name, ext, versn] = fileparts(filename); % test_image = imread(filename); @@ -41,9 +42,9 @@ % Defining Image Denoising Problem as Dictionary Learning % Problem. As an input we set the number of training patches. for noise_ind=1:1 -for im_num=4:4 +for im_num=2:2 SMALL.Problem = generateImageDenoiseProblem(test_image(im_num).i, 40000, '',256, noise_level(noise_ind)); -SMALL.Problem.name=im_num; +SMALL.Problem.name=int2str(im_num); results(noise_ind,im_num).noisy_psnr=SMALL.Problem.noisy_psnr;