Mercurial > hg > smallbox
diff examples/MajorizationMinimization tests/SMALL_AMT_DL_test_KSVD_MM.m @ 155:b14209313ba4 ivand_dev
Integration of Majorization Minimisation Dictionary Learning
author | Ivan Damnjanovic lnx <ivan.damnjanovic@eecs.qmul.ac.uk> |
---|---|
date | Mon, 22 Aug 2011 11:46:35 +0100 |
parents | |
children | f42aa8bcb82f |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/examples/MajorizationMinimization tests/SMALL_AMT_DL_test_KSVD_MM.m Mon Aug 22 11:46:35 2011 +0100 @@ -0,0 +1,270 @@ +%% Dictionary Learning for Automatic Music Transcription - KSVD vs SPAMS +% +% +% This file contains an example of how SMALLbox can be used to test diferent +% dictionary learning techniques in Automatic Music Transcription problem. +% It calls generateAMT_Learning_Problem that will let you to choose midi, +% wave or mat file to be transcribe. If file is midi it will be first +% converted to wave and original midi file will be used for comparison with +% results of dictionary learning and reconstruction. +% The function will generarte the Problem structure that is used to learn +% Problem.p notes spectrograms from training set Problem.b using +% dictionary learning technique defined in DL structure. +% Two dictionary learning techniques were compared: +% +% - KSVD - M. Elad, R. Rubinstein, and M. Zibulevsky, "Efficient +% Implementation of the K-SVD Algorithm using Batch Orthogonal +% Matching Pursuit", Technical Report - CS, Technion, April 2008. +% +% - MMDL - M. Yaghoobi, T. Blumensath and M. Davies, "Dictionary Learning +% for Sparse Approximations with the Majorization Method", IEEE +% Trans. on Signal Processing, Vol. 57, No. 6, pp 2178-2191, +% 2009. + +% +% Centre for Digital Music, Queen Mary, University of London. +% This file copyright 2011 Ivan Damnjanovic. +% +% This program is free software; you can redistribute it and/or +% modify it under the terms of the GNU General Public License as +% published by the Free Software Foundation; either version 2 of the +% License, or (at your option) any later version. See the file +% COPYING included with this distribution for more information. +%% + +clear; + + +% Defining Automatic Transcription of Piano tune as Dictionary Learning +% Problem + +SMALL.Problem = generateAMT_Learning_Problem('',2048,0.75); + +%% +% Use KSVD Dictionary Learning Algorithm to Learn 88 notes (defined in +% SMALL.Problem.p) using sparsity constrain only + +% Initialising Dictionary structure +% Setting Dictionary structure fields (toolbox, name, param, D and time) +% to zero values + +SMALL.DL(1)=SMALL_init_DL(); + +% Defining fields needed for dictionary learning + +SMALL.DL(1).toolbox = 'KSVD'; +SMALL.DL(1).name = 'ksvd'; +% Defining the parameters for KSVD +% In this example we are learning 88 atoms in 100 iterations, so that +% every frame in the training set can be represented with maximum Tdata +% dictionary elements. Type help ksvd in MATLAB prompt for more options. + +SMALL.DL(1).param=struct(... + 'Tdata', 5,... + 'dictsize', SMALL.Problem.p,... + 'iternum', 50); + +% Learn the dictionary + +SMALL.DL(1) = SMALL_learn(SMALL.Problem, SMALL.DL(1)); + +% Set SMALL.Problem.A dictionary and reconstruction function +% (backward compatiblity with SPARCO: solver structure communicate +% only with Problem structure, ie no direct communication between DL and +% solver structures) + +SMALL.Problem.A = SMALL.DL(1).D; +SMALL.Problem.reconstruct = @(x) SMALL_midiGenerate(x, SMALL.Problem); + +%% +% Initialising solver structure +% Setting solver structure fields (toolbox, name, param, solution, +% reconstructed and time) to zero values +% As an example, SPAMS (Julien Mairal 2009) implementation of LARS +% algorithm is used for representation of training set in the learned +% dictionary. + +SMALL.solver(1)=SMALL_init_solver; + +% Defining the parameters needed for sparse representation + +SMALL.solver(1).toolbox='SMALL'; +SMALL.solver(1).name='SMALL_cgp'; + +% Here we use mexLasso mode=2, with lambda=2, lambda2=0 and positivity +% constrain (type 'help mexLasso' for more information about modes): +% +% min_{alpha_i} (1/2)||x_i-Dalpha_i||_2^2 + lambda||alpha_i||_1 + (1/2)lambda2||alpha_i||_2^2 + +SMALL.solver(1).param='20, 1e-2'; +% struct(... +% 'lambda', 2,... +% 'pos', 1,... +% 'mode', 2); + +% Call SMALL_soolve to represent the signal in the given dictionary. +% As a final command SMALL_solve will call above defined reconstruction +% function to reconstruct the training set (Problem.b) in the learned +% dictionary (Problem.A) + +SMALL.solver(1)=SMALL_solve(SMALL.Problem, SMALL.solver(1)); + +%% +% Analysis of the result of automatic music transcription. If groundtruth +% exists, we can compare transcribed notes and original and get usual +% True Positives, False Positives and False Negatives measures. + +if ~isempty(SMALL.Problem.notesOriginal) + AMT_res(1) = AMT_analysis(SMALL.Problem, SMALL.solver(1)); +end + + + +%% +% % Here we solve the same problem using non-negative sparse coding with +% % SPAMS online dictionary learning (Julien Mairal 2009) +% % +% Initialising solver structure +% Setting solver structure fields (toolbox, name, param, solution, +% reconstructed and time) to zero values +% As an example, SPAMS (Julien Mairal 2009) implementation of LARS +% algorithm is used for representation of training set in the learned +% dictionary. + +SMALL.solver(2)=SMALL_init_solver; + +% Defining the parameters needed for sparse representation + +SMALL.solver(2).toolbox='SPAMS'; +SMALL.solver(2).name='mexLasso'; + +% Here we use mexLasso mode=2, with lambda=3, lambda2=0 and positivity +% constrain (type 'help mexLasso' for more information about modes): +% +% min_{alpha_i} (1/2)||x_i-Dalpha_i||_2^2 + lambda||alpha_i||_1 + (1/2)lambda2||alpha_i||_2^2 + +SMALL.solver(2).param=struct('lambda', 3, 'pos', 1, 'mode', 2); + + +% You can also test ALPS, IST from MMbox or any other solver, but results +% are not as good as SPAMS +% +% % Initialising solver structure +% % Setting solver structure fields (toolbox, name, param, solution, +% % reconstructed and time) to zero values +% +% SMALL.solver(2)=SMALL_init_solver; +% +% % Defining the parameters needed for image denoising +% +% SMALL.solver(2).toolbox='ALPS'; +% SMALL.solver(2).name='AlebraicPursuit'; +% +% SMALL.solver(2).param=struct(... +% 'sparsity', 10,... +% 'memory', 1,... +% 'mode', 6,... +% 'iternum', 100,... +% 'tau',-1,... +% 'tolerance', 1e-14',... +% 'verbose',1); + +% % Initialising Dictionary structure +% % Setting Dictionary structure fields (toolbox, name, param, D and time) +% % to zero values +% % Initialising solver structure +% % Setting solver structure fields (toolbox, name, param, solution, +% % reconstructed and time) to zero values +% +% SMALL.solver(2)=SMALL_init_solver; +% +% % Defining the parameters needed for image denoising +% +% SMALL.solver(2).toolbox='MMbox'; +% SMALL.solver(2).name='mm1'; +% SMALL.solver(2).param=struct(... +% 'lambda',50,... +% 'iternum',1000,... +% 'map',0); + +SMALL.DL(2)=SMALL_init_DL('MMbox', 'MM_cn', '', 1); + + +% Defining the parameters for Majorization Minimization dictionary update +% +% In this example we are learning 88 atoms in 200 iterations, so that + + +SMALL.DL(2).param=struct(... + 'solver', SMALL.solver(2),... + 'initdict', SMALL.Problem.A,... + 'dictsize', SMALL.Problem.p,... + 'iternum', 200,... + 'iterDictUpdate', 1000,... + 'epsDictUpdate', 1e-7,... + 'cvset',0,... + 'show_dict', 0); + + +% Learn the dictionary + +SMALL.DL(2) = SMALL_learn(SMALL.Problem, SMALL.DL(2)); + +% Set SMALL.Problem.A dictionary and reconstruction function +% (backward compatiblity with SPARCO: solver structure communicate +% only with Problem structure, ie no direct communication between DL and +% solver structures) + +SMALL.Problem.A = SMALL.DL(2).D; +SMALL.Problem.reconstruct=@(x) SMALL_midiGenerate(x, SMALL.Problem); + + +% Call SMALL_soolve to represent the signal in the given dictionary. +% As a final command SMALL_solve will call above defined reconstruction +% function to reconstruct the training set (Problem.b) in the learned +% dictionary (Problem.A) + +SMALL.solver(2)=SMALL_solve(SMALL.Problem, SMALL.solver(2)); + + +% Analysis of the result of automatic music transcription. If groundtruth +% exists, we can compare transcribed notes and original and get usual +% True Positives, False Positives and False Negatives measures. + +if ~isempty(SMALL.Problem.notesOriginal) + AMT_res(2) = AMT_analysis(SMALL.Problem, SMALL.solver(2)); +end + + +% Plot results and save midi files + +if ~isempty(SMALL.Problem.notesOriginal) + figAMT = SMALL_AMT_plot(SMALL, AMT_res); +else + figAMT = figure('Name', 'Automatic Music Transcription KSVD vs SPAMS'); + subplot(2,1,1); plot(SMALL.solver(1).reconstructed.notes(:,5), SMALL.solver(1).reconstructed.notes(:,3), 'kd '); + title (sprintf('%s dictionary in %.2f s', SMALL.DL(1).name, SMALL.DL(1).time)); + xlabel('Time'); + ylabel('Note Number'); + subplot(2,1,2); plot(SMALL.solver(2).reconstructed.notes(:,5), SMALL.solver(2).reconstructed.notes(:,3), 'b* '); + title (sprintf('%s dictionary in %.2f s', SMALL.DL(2).name, SMALL.DL(2).time)); + xlabel('Time'); + ylabel('Note Number'); +end + +FS=filesep; + +[pathstr1, name, ext, versn] = fileparts(which('SMALLboxSetup.m')); +cd([pathstr1,FS,'results']); + +[filename,pathname] = uiputfile({' *.mid;' },'Save KSVD result midi'); +if filename~=0 writemidi(SMALL.solver(1).reconstructed.midi, [pathname,FS,filename]);end + +[filename,pathname] = uiputfile({' *.mid;' },'Save SPAMS result midi'); +if filename~=0 writemidi(SMALL.solver(2).reconstructed.midi, [pathname,FS,filename]);end + +[filename,pathname] = uiputfile({' *.fig;' },'Save KSVD vs SPAMS AMT figure'); +if filename~=0 saveas(figAMT, [pathname,FS,filename]);end + + +